in the presence of Pd catalysts,9 while in tungsten-catalyzed
reactions, the branched product F2 was the major one.10 The
same regioselectivity can also be observed with other transi-
tion metals, such as molybdenum11 or iridium.12 In principle,
the product formation can be explained by a π-allyl palladium
intermediate E1, but detailed studies by Trost13 and Ba¨ck-
vall14 indicated that the situation is much more complex.
For example, if branched substrate D2 was reacted, the
linear product F1 was also the major one besides F2. This
is quite surprising because D2 can form π-allyl complexes
E1 and E3, as well, and therefore all three products F1-F3
can be expected. In addition, D2 should be able to form an
anti-vinyl allyl complex,7 analogue to B2 (not shown here
for clarity reasons), which should favor the formation of F2.4b
In contrast, substrate D3, which should deliver F2 and F3
via intermediate E3, gave rise to a mixture of products F1-
F3, while F2 was the major one. These results can be
explained by an isomerization of the π-allyl intermediates
via E2,13 although the different product distribution is
surprising. As an alternative, the formation of F1 from E3
can also be explained by an allylation under SN2′ conditions.
Unfortunately, under the standard reaction conditions used
for malonate allylations/dienylations, no differentiation be-
tween the mechanistic pathways can be made because under
these conditions isomerization is rather fast.13 On the other
hand, if it is possible to suppress these isomerizations, one
should be able to obtain important information about the
mechanism of these dienylations.
Scheme 1. Detailed Mechanism of Pd-Catalyzed Allylic
Alkylation and Dienylation
tion of the allylic substrate in the ionization step also plays
a crucial role because substrates of type A2 can ionize not
only to the syn-complex B1 but also to the anti-complex
B2, as well.7 The higher ratio of branched product C2 can
be explained by a higher reactivity of the anti-position in
complex B2 compared to the syn-position in complex B1.4b,8
This effect is relatively strong in reactions with small
substituents (e.g., R ) CH3). The anti-complex B2 is also
formed from the (Z)-substrate A3.
A more complex situation is when the higher unsaturated
compounds such as dienyl substrates D are reacted. In
dienylations of amines and malonates with linear substrates
such as D1, the linear product F1 was formed preferentially
For several years, our group has been investigating allylic
alkylations of amino acids15 and peptides.16 These substrates
are able to form highly reactive chelated enolates which allow
allylic alkylations at -78 °C. At this temperature, isomer-
ization processes can be suppressed efficiently.17 This is also
(9) (a) Trost, B. M.; Keinan, E. J. Org. Chem. 1979, 44, 3451-3457.
(b) Trost, B. M.; Keinan, E. J. Am. Chem. Soc. 1978, 100, 7779-7781. (c)
Andersson, P. G.; Ba¨ckvall, J. E. J. Org. Chem. 1991, 56, 5349-5353.
(10) Trost, B. M.; Lautens, M.; Hung, M.-H.; Carmichael, C. S. J. Am.
Chem. Soc. 1984, 106, 7641-7643.
(11) Trost, B. M.; Hildbrand, S.; Dogra, K. J. Am. Chem. Soc. 1999,
121, 10416-10417.
(12) (a) Takeuchi, R.; Tanabe, K. Angew. Chem. 2000, 112, 2051-2054.
(b) Lipowsky, G.; Helmchen, G. Chem. Commun. 2004, 116-117. (c)
Lipowski, G.; Miller, N.; Helmchen, G. Angew. Chem 2004, 116, 4695-
4698; Angew. Chem., Int. Ed. 2004, 43, 4595-4597.
(13) (a) Trost, B. M.; Bunt, R. C. Tetrahedron Lett. 1993, 34, 7513-
7616. (b) Trost, B. M.; Bunt, R. C. J. Am. Chem. Soc. 1998, 120, 70-79.
(14) Nilsson, Y. I. M.; Andersson, P. G.; Ba¨ckvall, J.-E. J. Am. Chem.
Soc. 1993, 115, 6609-6613.
(15) (a) Kazmaier, U.; Zumpe, F. L. Angew. Chem. 1999, 111, 1572-
1574; Angew. Chem., Int. Ed. 1999, 38, 1468-1470. (b) Kazmaier, U.;
Maier, S.; Zumpe, F. L. Synlett 2000, 1523-1535. (c) Weiss, T. D.;
Helmchen, G.; Kazmaier, U. Chem. Commun. 2002, 1270-1271. (d)
Kazmaier, U. Curr. Org. Chem. 2003, 317-328. (e) Kazmaier, U.; Stolz,
D. Angew. Chem. 2006, 118, 3143-3146; Angew. Chem., Int. Ed. 2006,
45, 3072-3075 and references cited therein.
(16) (a) Kazmaier, U.; Deska, J.; Watzke, A. Angew. Chem. 2006, 118,
4973-4976; Angew. Chem., Int. Ed. 2006, 45, 4855-4858. (b) Deska, J.;
Kazmaier, U. Angew. Chem. 2007, 119, 4654-4657; Angew. Chem., Int.
Ed. 2007, 46, 4570-4573. (c) Deska, J.; Kazmaier, U. Chem.sEur. J. 2007,
13, 6204-6211.
(17) (a) Kazmaier, U.; Zumpe, F. L. Angew. Chem. 2000, 112, 805-
807; Angew. Chem., Int. Ed. 2000, 39, 802-804. (b) Kazmaier, U.; Zumpe,
F. L. Eur. J. Org. Chem. 2001, 4067-4076. (c) Kazmaier, U.; Pohlman,
M. Synlett 2004, 623-626. (d) Kazmaier, U.; Pohlmann, M.; Lindner, T.
J. Org. Chem. 2004, 69, 6909-6912. (e) Kazmaier, U.; Lindner, T. Angew.
Chem. 2005, 117, 3368-3371; Angew. Chem., Int. Ed. 2005, 44, 3303-
3306. (f) Lindner, T.; Kazmaier, U. AdV. Synth. Catal. 2005, 347, 1687-
1695. (g) Kazmaier, U.; Kra¨mer K. J. Org. Chem. 2006, 71, 8950-8953.
(5) (a) Trost, B. M.; Bunt, R. C. J. Am. Chem. Soc. 1996, 118, 235-
236. (b) Lloyd-Jones, G. C.; Stephen, S. C. Chem.sEur. J. 1998, 4, 2539-
2549. (c) Poli, G.; Scolastico, C. Chemtracts 1999, 12, 837-845. (d) Lloyd-
Jones, G. C.; Stephen, S. C.; Murray, M.; Butts, C. P.; Vyskocil, S.;
Kocovsky, P. Chem.sEur. J. 2000, 6, 4348-4357. (e) Lloyd-Jones, G. C.
Synlett 2001, 161-183. (f) Fairlamb, I. J. S.; Lloyd-Jones, G. C.; Vyskocil,
S.; Kocovsky, P. Chem.sEur. J. 2002, 8, 4443-4453. (g) Gouriou, L.;
Lloyd-Jones, G. C.; Vyskovil, S.; Kocovsky, P. J. Organomet. Chem. 2003,
687, 525-537. (h) Lussem, B. J.; Gais, H.-J. J. Org. Chem. 2004, 69, 4041-
4052. (i) Faller, J. W.; Sarantopoulos, N. Organometallics 2004, 23, 2179-
2185.
(6) (a) Sprinz, J.; Kiefer, M.; Helmchen, G.; Reggelin, M.; Huttner, G.;
Walter, O.; Zsolnai, L. Tetrahedron Lett. 1994, 35, 1523-1526. (b) Brown,
J. M.; Hulmes, D. I.; Guiry, P. J. Tetrahedron 1994, 50, 4493-4506. (c)
Blo¨chl, P. E.; Togni, A. Organometallics 1996, 15, 4125-4132. (d) Lloyd-
Jones, G. C.; Stephen, S. C. Chem. Commun. 1998, 2321-2322. (e)
Goldfuss, B.; Kazmaier, U. Tetrahedron 2000, 56, 6493-6496. (f) Fagnou,
K.; Lautens, M. Angew. Chem. 2002, 114, 26-49; Angew. Chem., Int. Ed.
2002, 41, 26-47.
(7) (a) Fristrup, P.; Jensen, T.; Hoppe, J.; Norrby, P.-O. Chem.sEur. J.
2006, 12, 5352-5360. (b) Svensen, N.; Fristrup, P.; Tanner, D.; Norrby,
P.-O. AdV. Synth. Catal. 2007, 349, 2631-2640.
(8) The syn/anti-terminology was used to describe the relative orientation
of the substituents at the allylic position relative to the hydrogen at the
central position of the π-allyl Pd complex.
502
Org. Lett., Vol. 10, No. 3, 2008