10.1002/anie.201908330
Angewandte Chemie International Edition
COMMUNICATION
Dijk, M. J. Tilby, R. Szpera, O. A. Smith, H. A. P. Bunce, S. P. Fletcher, Nat.
Rev. Chem. 2018, 2, 0117.
Angew. Chem. 2011, 123, 1881–1884; f) D. Ray, J. T. Foy, R. P. Hughes, I.
Aprahamian, Nat. Chem. 2012, 4, 757–762; g) S. Kassem, A. T. L. Lee, D. A.
Leigh, A. Markevicius, J. Solà, Nat. Chem. 2016, 8, 138–143; h) Q. Li, H. Qian,
B. Shao, R. P. Hughes, I. Aprahamian, J. Am. Chem. Soc. 2018, 140, 11829–
11835; i) A. Blanco-Gómez, A. Fernández-Blanco, V. Blanco, J. Rodríguez, C.
Peinador, M. D. García, J. Am. Chem. Soc. 2019, 141, 3959–3964; j) B. Shao,
H. Qian, Q. Li, I. Aprahamian, J. Am. Chem. Soc. 2019, 141, 8364–8371; k) Y.-
X. Yuan, Y.-S. Zheng, ACS Appl. Mater. Interfaces 2019, 11, 7303–7310.
[21] For a recent review on amide catenanes and rotaxanes, see: a) N. H.
Evans, Eur. J. Org. Chem. 2019, 3320–3343.
[11] A change in macrocycle position has been used to block or expose catalytic
sites on rotaxane axles: a) V. Blanco, A. Carlone, K. D. Hänni, D. A. Leigh, B.
Lewandowski, Angew. Chem. Int. Ed. 2012, 51, 5166–5169; Angew. Chem.
2012, 124, 5256–5259; b) V. Blanco, D. A. Leigh, U. Lewandowska, B.
Lewandowski, V. Marcos, J. Am. Chem. Soc. 2014, 136, 15775–15780; c) J.
Beswick, V. Blanco, G. De Bo, D. A. Leigh, U. Lewandowska, B. Lewandowski,
K. Mishiro, Chem. Sci. 2015, 6, 140–143; d) C.-S. Kwan, A. S. C. Chan, K. C.-
F. Leung, Org. Lett. 2016, 18, 976–979; e) K. Eichstaedt, J. Jaramillo-Garcia,
D. A. Leigh, V. Marcos, S. Pisano, T. A. Singleton, J. Am. Chem. Soc. 2017,
139, 9376–9381; f) J. Y. C. Lim, N. Yuntawattana, P. D. Beer, C. K. Williams,
Angew. Chem. Int. Ed. 2019, 58, 6007–6011; Angew. Chem. 2019, 131, 6068–
6072; g) C. Biagini, S. D. P. Fielden, D. A. Leigh, F. Schaufelberger, S. Di
Stefano, D. Thomas, Angew. Chem. Int. Ed. 2019, 58, 9876–9880; Angew.
Chem. 2019, 131, 9876–9880.
[22] D. A. Leigh, V. Marcos, T. Nalbantoglu, I. J. Vitorica-Yrezabal, F. T. Yasar,
X. Zhu, J. Am. Chem. Soc. 2017, 139, 7104–7109.
[23] a) B. M. Trost, Acc. Chem. Res. 1996, 29, 355–364; b) R. Stranne, J.-L.
Vasse, C. Moberg, Org. Lett. 2001, 3, 2525–2528.
[24] ‘Co-conformation’ refers to the relative positions of noncovalently linked
components with respect to each other, see: M. C. T. Fyfe, P. T. Glink, S.
Menzer, J. F. Stoddart, A. J. P. White, D. J. Williams, Angew. Chem. Int. Ed.
Engl. 1997, 36, 2068–2070; Angew. Chem. 1997, 109, 2158–2160.
[25] a) S. Mossé, A. Alexakis, Org. Lett. 2005, 7, 4361–4364; b) A. Landa, M.
Maestro, C. Masdeu, Á. Puente, S. Vera, M. Oiarbide, C. Palomo, Chem.—Eur.
J. 2009, 15, 1562–1565.
[12] For other examples of molecular machine designs for switchable catalysis,
see: a) B. A. F. Le Bailly, L. Byrne, J. Clayden, Angew. Chem. Int. Ed. 2016, 55,
2132–2136; Angew. Chem. 2016, 128, 2172–2176; b) N. Mittal, S. Pramanik, I.
Paul, S. De, M. Schmittel, J. Am. Chem. Soc. 2017, 139, 4270–4273; c) G. De
Bo, D. A. Leigh, C. T. McTernan, S. Wang, Chem. Sci. 2017, 8, 7077–7081.
[13] E. L. Eliel, S. H. Wilen, Stereochemistry of Organic Compounds, Wiley, New
York, 1994.
[26] L. Zhang, V. Marcos, D. A. Leigh, Proc. Natl. Acad. Sci. USA 2018, 115,
9397–9404.
[14] a) M. Alvarez-Pérez, S. M. Goldup, D. A. Leigh, A. M. Z. Slawin, J. Am.
Chem. Soc. 2008, 130, 1836–1838; b) A. Carlone, S. M. Goldup, N. Lebrasseur,
D. A. Leigh, A. Wilson, J. Am. Chem. Soc. 2012, 134, 8321–8323; c) Y. Cakmak,
S. Erbas-Cakmak, D. A. Leigh, J. Am. Chem. Soc. 2016, 138, 1749–1751.
[15] a) N. H. Evans, Chem.—Eur. J. 2018, 24, 3101–3112; b) E. M. G.
Jamieson, F. Modicom, S. M. Goldup, Chem. Soc. Rev. 2018, 47, 5266–5311.
[16] Classified as ‘co-conformationally covalent point/centrally chiral’ in ref [15b].
[17] a) R. A. Bissell, E. Córdova, A. E. Kaifer, J. F. Stoddart, Nature, 1994, 369,
133–136; b) A. S. Lane, D. A. Leigh, A. Murphy, J. Am. Chem. Soc. 1997, 119,
11092–11093; c) H. Tian, Q.-C. Wang, Chem. Soc. Rev. 2006, 35, 361–374; d)
S. Erbas-Cakmak, D. A. Leigh, C. T. McTernan, A. L. Nussbaumer, Chem. Rev.
2015, 115, 10081–10206.
[18] For examples of enantioselective catalysis by chiral interlocked molecules,
see: a) Y. Tachibana, N. Kihara, T. Takata, J. Am. Chem. Soc. 2004, 126, 3438–
3439; b) Y. Tachibana, N. Kihara, K. Nakazono, T. Takata, Phosphorus, Sulfur
Silicon Relat. Elem. 2010, 185, 1182–1205; c) V. Blanco, D. A. Leigh, V.
Marcos, J. A. Morales-Serna, A. L. Nussbaumer, J. Am. Chem. Soc. 2014, 136,
4905–4908; d) S. Hoekman, M. O. Kitching, D. A. Leigh, M. Papmeyer, D. Roke,
J. Am. Chem. Soc. 2015, 137, 7656–7659; e) Y. Cakmak, S. Erbas-Cakmak, D.
A. Leigh, J. Am. Chem. Soc. 2016, 138, 1749–1751; f) F. Ishiwari, K. Nakazono,
Y. Koyama, T. Takata, Angew. Chem. Int. Ed. 2017, 56, 14858–14862; Angew.
Chem. 2017, 129, 15054–15058; g) A. Martinez-Cuezva, M. Marin-Luna, D. A.
Alonso, D. Ros-Ñiguez, M. Alajarin, J. Berná, Org. Lett. 2019, 21, 5192–5196.
For the use of a chiral [2]catenane in enantioselective catalysis, see: h) R. Mitra,
H. Zhu, S. Grimme, J. Niemeyer, Angew. Chem. Int. Ed. 2017, 56, 11456–
11459; Angew. Chem. 2017, 129, 11614–11617. For the use of a topologically
chiral trefoil knot in enantioselective catalysis, see: i) G. Gil-Ramírez, S.
Hoekman, M. O. Kitching, D. A. Leigh, I. J. Vitorica-Yrezabal, G. Zhang, J. Am.
Chem. Soc. 2016, 138, 13159–13162.
[19] For examples of diastereoselective catalysis by chiral rotaxanes, see: a) M.
Galli, J. E. M. Lewis, S. M. Goldup, Angew. Chem. Int. Ed. 2015, 54, 13545–13549;
Angew. Chem. 2015, 127, 13749–13753; b) A. Martinez-Cuezva, C. Lopez-
Leonardo, D. Bautista, M. Alajarin, J. Berná, J. Am. Chem. Soc. 2016, 138, 8726–
8729; c) A. Martinez-Cuezva, A. Saura-Sanmartin, T. Nicolas-Garcia, C.
Navarro, R.-A. Orenes, M. Alajarin, J. Berná, Chem. Sci. 2017, 8, 3775–3780;
d) A. Martinez-Cuezva, D. Bautista, M. Alajarin, J. Berná, Angew. Chem. Int. Ed.
2018, 57, 6563–6567; Angew. Chem. 2018, 130, 6673–6677.
[20] a) M. N. Chaur, D. Collado, J.-M. Lehn, Chem.—Eur. J. 2011, 17, 248–258;
b) G. Vantomme, N. Hafezi, J.-M. Lehn, Chem. Sci. 2014, 5, 1475–1483; c) D.
J. van Dijken, P. Kovaříček, S. P. Ihrig, S. Hecht, J. Am. Chem. Soc. 2015, 137,
14982–14991. For selected examples of the use of hydrazones in molecular
machines, see: d) X. Su, I. Aprahamian, Org. Lett. 2011, 13, 30–33; e) X. Su,
T. F. Robbins, I. Aprahamian, Angew. Chem. Int. Ed. 2011, 50, 1841–1844;
This article is protected by copyright. All rights reserved.