R. Mosca et al. / Tetrahedron 57 '2001) 10319±10328
10327
13C -CD3COCD3) d 18.7, 26.3 -CH3), 35.5 -CH2), 46.8
-CH2), 48.0 -CH), 64.7 -CH2), 64.9 -CH2), 72.1 -CH),
103.0 -CH), 128.0 -CH), 129.8 -CH), 133.4, 133.5, 135.6
-CH), 214.2 -CO). IR -neat) n/cm21 3069, 1744, 1111,
1051. Anal. Calcd for C24H30O4Si: C, 70.21; H, 7.36.
Found: C, 70.13; H, 7.40.
Yunker, M. B.; Tam, S. Y.-K.; Anderson, R. C. Tetrahedron
Lett. 1975, 297. -c) Rosenthal, I.; Elad, D. J. Org. Chem. 1968,
33, 805.
9. -a) Malatesta, V.; Ingold, K. U. J. Am. Chem. Soc. 1981, 103,
609. -b) The occurrence of path e is supported by the fact that
the photochemical alkylation of 1,3-dioxin-4-ones by 1,3-
dioxolanyl radical has been reported to occur in the absence
of the sensitiser, although a long irradiation time was required
-12 days, see ref. 9c). -c) Graalfs, H.; Froehlich, R.; Wolff, C.;
Mattay, J. Eur. J. Org. Chem. 1999, 1057.
Compound 130: 1H -CD3COCD3) d 1.1 -s, 9H), 2.1 -m, 2H),
2.15±2.4 -m, 2H), 2.5 -m, 1H), 3.8±4.0 -m, 4H), 4.8 -m,
1H), 5.3 -d, 1H, J5.5 Hz), 7.5 -m, 6H), 7.75 -m, 4H). 13C
-CD3COCD3) d 19.4, 26.8 -CH3), 37.4 -CH2), 46.0 -CH),
47.6 -CH2), 64.9 -CH2), 65.2 -CH2), 72.4 -CH), 104.2 -CH),
128.1 -CH), 130.3 -CH), 133.5, 134.3, 136.1 -CH), 136.2
-CH), 214.0 -CO). IR -neat) n/cm21 3069, 1744, 1111,
1041. Anal. Calcd for C24H30O4Si: C, 70.21; H, 7.36.
Found: C, 70.11; H, 7.44.
10. The reduction of 1,3-dioxolan-2-yl radicals by ground state
benzophenone is markedly endoergonic, as apparentby hte
comparison of the oxidation potential of these radicals -see
below and Ref. 11) and the reduction potential of the sensitiser
-21.68 vs SCE, Ref. 12). However, when the radical is persis-
tent and neither rearranges nor adds to alkenes easily as in the
case of the phenyl derivative, electron transfer becomes
signi®cant.
Acknowledgements
R. M. thanks Prochimica for a fellowship. We are greatly
indebted to Millipore for the grant of silica gel. Partial
supportof htis work by Murst-COFIN Program) Rome
is gratefully acknowledged. We thank Dr P. P. Rossi
-Prochimica) for his interest in this work.
11. Fontana, F.; Kolt, R. J.; Huang, Y.; Wayner, D. D. M. J. Org.
Chem. 1994, 59, 4671.
12. Photoinduced Electron Transfer; Fox, M. A., Chanon, M.,
Eds.; Elsevier: Amsterdam, 1988; p 476, Part A.
References
13. Roberts, B. P.; Smits, T. M. Tetrahedron Lett. 2001, 42, 137
and p 3663.
1. Manfrotto, C.; Mella, M.; Freccero, M.; Fagnoni, M.; Albini,
A. J. Org. Chem. 1999, 64, 5024.
14. A variety of methods has been reported for the synthesis of
1,4-diketones, a selection being as follows. From ketones via
nitroaldol reaction, see Rosini, G.; Ballini, R. Synthesis 1988,
833. The palladium-catalyzed oxidation of g-ketoalkenes, see
Tsuji, J.; Shimizu, I.; Yamamoto, K. Tetrahedron Lett. 1976,
17, 2975. The benzoin condensation, see Stetter, H. Angew.
Chem., Int. Ed. Engl. 1976, 15, 639. The palladium-catalyzed
acylation of organozincs, see Nakamura, E.; Aoki, S.; Sekiya,
K.; Oshino, H.; Kuwajima, I. J. Am. Chem. Soc. 1987, 109,
8056. The functionalization of ketones by nitropyridinium
salts, see Negele, S.; Wieser, K.; Severin, T. J. Org. Chem.
1998, 63, 1138. For further methods see Ref. 6 as well as
Ballini, R.; Bartoli, G. Synthesis 1993, 965 and references
cited herein.
2. -a) Ley, S. V.; Baeschlin, D. J.; Dixon, D. J.; Foster, A. C.;
Ince, S. J.; Priepke, H. W. M.; Reynolds, D. J. Chem. Rev.
Á
2001, 101, 53. -b) Carini, S.; Cere, V.; Peri, F.; Pollicino, S.
Synthesis 2000, 1756.
3. -a) Petersen, J. S.; Toetenberg-Kaulen, S.; Rapoport, H. J. Org.
Chem. 1984, 49, 2948. -b) Kondo, K.; Tunemoto, D.
Tetrahedron Lett. 1975, 16, 1397. -c) Fiandanese, V.;
Marchese, G.; Naso, F. Tetrahedron Lett. 1988, 29, 3587.
-d) Zschiesche, R.; Hafner, T.; Reissig, H.-U. Liebigs Ann.
Chem. 1988, 1169. -e) Werner, K. M.; de los Santos, J. M.;
Weinreb, S. M.; Shang, M. J. Org. Chem. 1999, 64, 4865.
4. -a) Ballini, R.; Bartoli, G. Synthesis 1993, 965 and references
cited herein. -b) Gronowitz, S. The Chemistryof Heterocyclic
Compounds; Gronowitz, S., Ed.; Wiley: New York, 1985;
Vol. 44, p 21, Part1. -c) Bean, G. P. The Chemistryof Hetero-
cyclic Compounds; Jones, R. A., Ed.; Wiley: New York, 1990;
Vol. 48, p 206, Part1.
15. -a) Monoprotected 1,4-diketones were used recently in the
synthesis of zaragozic acid, see Hegde, S. G.; Myles, D. C.
Tetrahedron Lett. 1997, 38, 4329. -b) As well as of medium-
sized cyclic enol ethers or dienol ethers, see Mori, T.;
Taniguchi, M.; Suzuki, F.; Doi, H.; Oku, A. J. Chem. Soc.
Perkin Trans. 1 1998, 3623. -c) Hoffmann, H. M. R.;
Muennich, I.; Nowitzki, O.; Stucke, H.; Williams, D. J.
Tetrahedron 1996, 52, 11783. -d) Bach, J.; Berenguer, R.;
Garcia, J.; Lopez, M.; Manzanal, J.; Vilarrasa, J. Tetrahedron
1998, 54, 14947.
5. -a) Ryabinina, T. A.; Kruglov, D. E.; Pastushenko, E. V.;
Terent'ev, A. B. Russ. J. Org. Chem. 1992, 28, 602.
-b) Batyrbaev, N. A.; Zorin, V. V.; Zlot-Skii, S. S.; Rakhman-
kulov, D. L. Russ. J. Org. Chem. 1981, 17, 1727.
6. Some exceptions were recently described, viz an oxidative
dioxolanyl radical attack onto a,b-unsatured esters see:
Hirano, K.; Iwahama, T.; Sakaguchi, S.; Ishii, Y. Chem.
Commun. 2000, 2457. Intramolecular dioxolanyl radical cycli-
zation onto alkenes in the presence of thiols see: Dang, H.-S.;
Roberts, B. P. Tetrahedron Lett. 1999, 40, 8929.
16. 1,4-Diketones arising from the open chain dioxolanes
obtained in this work were used in the synthesis of radio-
protecting agents, Law, H.; Pera, M. H.; Taillandier, G.;
Fatome, M.; Laval, J. D.; Leclerc, G. Eur. J. Med. Chem.
1993, 28, 703. Law, H.; Pera, M. H.; Taillandier, G.; Fatome,
M.; Laval, J. D.; Leclerc, G. Eur. J. Med. Chem. 1994, 29, 121.
Taroua, M.; Pera, M. H.; Taillandier, G.; Fatome, M.; Laval,
J. D.; Leclerc, G. Eur. J. Med. Chem. 1994, 29, 621.
7. Venkateswara Rao, B.; Chan, J. B.; Moskowitz, N.; Fraser-
Reid, B. Bull. Soc. Chim. Fr. 1993, 428.
8. -a) Hartgerink, J. W.; van der Laan, L. C. J.; Engberts,
J. B. F. N.; de Boer, Th.J. Tetrahedron 1971, 27, 4323.
-b) Fraser-Reid, B.; Hicks, D. R.; Walker, D. L.; Iley, D. E.;