ORGANIC
LETTERS
2008
Vol. 10, No. 21
4967-4970
Iodocyclization of Ethoxyethyl Ethers to
Alkynes: A Broadly Applicable
Synthesis of 3-Iodobenzo[b]furans
Takashi Okitsu, Daisuke Nakazawa, Rie Taniguchi, and Akimori Wada*
Department of Organic Chemistry for Life Science, Kobe Pharmaceutical UniVersity,
4-19-1, Motoyamakita-machi, Higashinada-ku, Kobe 658-8558, Japan
Received September 2, 2008
ABSTRACT
A wide variety of 3-iodobenzo[b]furans were readily prepared by iodocyclization of 2-alkynyl-1-(1-ethoxyethoxy)benzenes with the
I(coll)2PF6-BF3·OEt2 combination. Aryl-, vinylic-, and alkyl-substituted alkynes undergo iodocyclization in good to excellent yields. The mechanism
of the reaction is also discussed.
The benzo[b]furans are attractive synthetic target molecules
due to the wide spectrum of their biological activities in
natural and unnatural compounds.1 Numerous efficient
methods for the synthesis of the benzo[b]furans have been
developed.2,3 Among them, iodocyclization of 2-alkynylphe-
nol derivatives is a powerful method for the construction of
3-iodobenzo[b]furans due to the potential for further func-
tionalization at the C-I bond by metal-catalyzed cross-
coupling.3
Arcadi et al. reported the synthesis of 3-iodobenzo[b]furans
by iodocyclization of 2-alkynylphenols (eq 1).3a However,
their method requires a series of protecting and deprotecting
steps for the preparation of 2-alkynylphenols, which are also
relatively unstable. Larock and Colobert et al. reported the
iodocyclization of 2-alkynylanisoles, which are stable and
more easily prepared in fewer steps than in Arcadi’s
procedure (eq 2).3b,c Although the 2-aryl-3-iodobenzo[b]-
furans were successfully synthesized by these methodologies,
the application for 2-alkyl derivatives has been limited due
(2) (a) Tsai, T.-W.; Wang, E.-C.; Huang, K.-S.; Li, S.-R.; Wang, Y.-F.;
Lin, Y.-L.; Chen, Y.-H. Heterocycles 2004, 63, 1771–1781. (b) Hercouet,
A.; Corre, M. L. Tetrahedron Lett. 1979, 2145–2148. (c) Akiyama, S.;
Akimoto, H.; Nakatsuji, S.; Nakashima, K. Bull. Chem. Soc. Jpn. 1985,
58, 2192–2196. (d) Seemuth, P. D.; Zimmer, H. J. Org. Chem. 1978, 43,
3063–3064. (e) Dai, D.-M.; Lai, K.-W. Tetrahedron Lett. 2002, 43, 9377–
9380. (f) Manojit, P.; Venkataraman, S.; Koteswar, R. Y. Tetrahedron Lett.
2003, 44, 8221–8225. (g) Hu, Y.; Nawoschik, K. J.; Liao, Y.; Ma, J.; Fathi,
R.; Yang, Z. J. Org. Chem. 2004, 69, 2235–2239. (h) Liang, Y.; Tang, S.;
Zhang, X.-D.; Mao, L.-Q.; Xie, Y.-X.; Li, J.-H. Org. Lett. 2006, 8, 3017–
3020. (i) Bates, C. G.; Saejueng, P.; Murphy, J. M.; Venkataraman, D. Org.
Lett. 2002, 4, 4727–4729. (j) Carril, M.; SanMartin, R.; Tellitu, I.;
Dom´ınguez, E. Org. Lett. 2006, 8, 1467–1470. (k) Willis, M. C.; Taylor,
D.; Gillmore, A. T. Org. Lett. 2004, 6, 4755–4757. (l) Kraus, G. A.; Zhang,
N.; Verkade, J. G.; Nagarajan, M.; Kisange, P. B. Org. Lett. 2000, 2, 2409–
2410. (m) Akai, S.; Morita, N.; Iio, K.; Nakamura, Y.; Kita, Y. Org. Lett.
2000, 2, 2279–2282. (n) Miyata, O.; Takeda, N.; Naito, T. Org. Lett. 2004,
6, 1761–1763.
(1) (a) Dean, F. M. The Total Synthesis of Natural Products; ApSimon,
J., Ed.; Wiley: New York, 1973; Vol. 1, pp 467-562. (b) Cagniant, P.;
Cagniant, D. In AdVances in Heterocyclic Chemistry; Katritzky, A. R.,
Boulton, A. J., Eds.; Academic Press: New York, 1975; Vol. 18, pp
337-482. (c) Dean, F. M.; Sargent, M. V. In ComprehensiVe Heterocyclic
Chemistry; Katritzky, A. R., Rees, C. W., Eds.; Pergamon Press: Oxford,
UK, 1984; Vol. 4, pp 531-596. (d) ComprehensiVe Heterocyclic Chemistry
II; Katritzky, A. R., Rees, C. W., Scriven, E. F. V., Eds.; Pergamon Press:
Oxford, UK, 1996; Vol. 2, pp 259-321.
(3) (a) Arcadi, A.; Cacchi, S.; Fabrizi, G.; Marinelli, F.; Moro, L. Synlett
1999, 1432–1434. (b) Yue, D.; Yao, T.; Larock, R. C. J. Org. Chem. 2005,
70, 10292–10296. (c) Colobert, F.; Castanet, A.-S.; Abillard, O. Eur. J.
Org. Chem. 2005, 3334–3341.
10.1021/ol8020463 CCC: $40.75
Published on Web 10/03/2008
2008 American Chemical Society