9 G. P. Agrawal, C. Cojan and C. Flytzanis, Phys. Rev. B, 1978, 17,
776–789.
10 J. Huang, C. Li, Y. J. Xia, X. H. Zhu, J. Peng and Y. Cao, J. Org.
Chem., 2007, 72, 8580–8583.
11 S. H. Jin, M. Y. Kim, J. Y. Kim, K. Lee and Y. S. Gal, J. Am. Chem.
Soc., 2004, 126, 2474–2480.
12 S. Yin, H. Xu, X. Su, L. Wu, Y. Song and B. Z. Tang, Dyes Pigm.,
2007, 75, 675–680.
13 S. Yin, H. Xu, W. Shi, L. Bao, Y. Gao, Y. Song and B. Z. Tang, Dyes
Pigm., 2007, 72, 119–123.
14 S. C. Yin, H. Y. Xu, X. Y. Su, G. Li, Y. L. Song, J. W. Y. Lam and
B. Z. Tang, J. Polym. Sci., Part A: Polym. Chem., 2006, 44,
2346–2357.
polymers can be adjusted by varying terminal alkoxy chain
length. The oxadiazole-containing PA with longer terminal
alkoxy group chain shows better solubility than PA with shorter
terminal alkoxy chain. Simultaneously, the stereoregularity and
properties of the resulting PAs is also significantly affected by
terminal alkoxy group chain length. The cis olefinic structure
content in PA backbone increases with increasing terminal
alkoxy group length, which is mainly attributed to the more
difficult cis-trans isomerization during polymerization due to the
larger stereo-hindrance of alkoxy chain. Polymer with higher cis
olefinic structure content exhibits higher thermal stability, better
optical limiting properties and nonlinear optical property. The
OL mechanism are mainly originated from larger excitation state
absorption cross-section to result in reverse saturable absorp-
tion. This work provides further understanding of relationship
between molecular structure and their optical properties of
functional PAs and paves the new way for designing new soluble
functional PAs with high thermal stability and well optical
limiting property.
15 S. Yin, H. Xu, W. Shi, Y. Gao, Y. Song, J. W. Y. Lam and B. Z. Tang,
Polymer, 2005, 46, 7670–7677.
16 C. B. He, Y. Xiao, J. C. Huang, T. T. Lin, K. Y. Mya and
X. H. Zhang, J. Am. Chem. Soc., 2004, 126, 7792–7793.
17 H. H. Sung and H. C. Lin, Macromolecules, 2004, 37, 7945–7954.
18 S. H. Mashraqui, R. S. Kenny, S. G. Ghadigaonkar, A. Krishnan,
M. Bhattacharya and P. K. Das, Opt. Mater., 2004, 27, 257–260.
19 X. Wang, J. Wu, H. Xu, P. Wang and B. Tang, J. Polym. Sci., Part A:
Polym. Chem., 2008, 46, 2072–2083.
20 A. Schuling, Chem. Phys. Lett., 1967, 195–199.
21 Y. Fujita, Y. Misumi, M. Tabata and T. Masuda, J. Polym. Sci., Part
A: Polym. Chem., 1998, 36, 3157–3136.
22 M. Haussler, J. Liu, R. Zheng, J. W. Y. Lam, A. Qin and B. Z. Tang,
Macromolecules, 2007, 40, 1914–1925.
23 M. Tabata, Y. Tanaka, Y. Sadahiro, T. Sone, K. Yokota and
I. Miura, Macromolecules, 1997, 30, 5200–5204.
24 M. Tabata, T. Sone, Y. Sadahiro, K. Yokota and Y. Nozaki,
J. Polym. Sci., Part A: Polym. Chem., 1998, 36, 217–223.
25 B. Z. Tang, X. Kong, X. Wan, H. Peng, W. Y. Lam, X. D. Feng and
H. S. Kwok, Macromolecules, 1998, 31, 2419–2432.
26 B. Z. Tang, X. Kong, X. Wan and X. D. Feng, Macromolecules, 1997,
30, 5620–5628.
Acknowledgements
This research was financially supported by the National Natural
Science Fund of China (Grant Nos. 90606011 and 50472038),
Ph.D. Program Foundation of Ministry of Education of China
(No.20070255012) and Shanghai Leading Academic Discipline
Project (No. B603).
27 C. H. Ting, J. T. Chen and C. S. Hsu, Macromolecules, 2002, 35,
1180–1189.
28 X. Kong, J. W. Y. Lam and B. Z. Tang, Macromolecules, 1999, 32,
1722–1730.
29 J. W. Y. Lam, Y. Dong, H. S. Kwok and B. Z. Tang, Macromolecules,
2006, 39, 6997–7003.
30 J. W. Y. Lam, Y. Dong, K. K. L. Cheuk, J. Luo, Z. Xie, H. S. Kwok,
Z. Mo and B. Z. Tang, Macromolecules, 2002, 35, 1229–1240.
31 S. C. Yin, H. Y. Xu, M. Fang, W. F. Shi, Y. C. Gao and Y. L. Song,
Macromol. Chem. Phys., 2005, 206, 1549–1557.
32 B. Z. Tang and H. Xu, Macromolecules, 1999, 32, 2569–2576.
33 W. F. Sun, M. M. Bader and T. Carvalho, Opt. Commun., 2003, 215,
185–190.
34 J. W. Perry, K. Mansour, S. R. Marder, K. J. Perry, J. Daniel Alvarez
and I. Choong, Opt. Lett., 1994, 19, 625–627.
References
1 Y. Suzuki, K. Komatsu, T. Kaino and Y. Honda, Opt. Mater., 2003,
21, 521–524.
2 Y. Shi, W. Lin, D. J. Olson, J. H. Bechtel, H. Zhang, W. H. Steier,
C. Zhang and L. R. Dalton, Appl. Phys. Lett., 2000, 77, 1–3.
3 M. Samoc, A. Samoc and B. Luther-Davies, Synth. Met., 2000, 109,
79–83.
4 B. Li, H. Wu, W. Yi, C. Gao and X. Li, Synth. Met., 2005, 155,
146–149.
5 M. Hotzel, S. Urban, D. A. M. Egbe, T. Pautzsch and E. Klemm,
J. Opt. Soc. Am. B: Opt. Phys., 2002, 19, 2645–2649.
6 W. S. Fann, S. Benson, J. M. Madey, S. Etemad, G. L. Baker and
F. Kajar, Phys. Rev. Lett., 1989, 62, 1492–1495.
7 H. Shirakawa, Angew. Chem., Int. Ed., 2001, 40, 2574–2580.
8 J. W. Y. Lam and B. Z. Tang, Acc. Chem. Res., 2005, 38, 745–754.
35 M. S. BaHae, A. A. Said, T. H. Wei, D. J. Hagan and
E. W. V. Stryland, IEEE J. Quantum Electron., 1990, 26, 760–769.
This journal is ª The Royal Society of Chemistry 2008
J. Mater. Chem., 2008, 18, 4204–4209 | 4209