4942
N. K. Jobson et al. / Bioorg. Med. Chem. Lett. 18 (2008) 4940–4943
OH
As expected, (2S,3S)-iodoreboxetine 4 has high affinity for NAT
with a Ki value of 53.8 nM. Surprisingly, (2R,3R)-iodoreboxetine 5
has also significant potency for NAT with a similar Ki value of
64.0 nM. Our previous work with stereoisomers, 2 and 3 and our
result for (2S,3S)-analogue 4 shows that the 3S-stereogenic centre
is required for high affinity with NAT.10 The fact that (2R,3R)-ste-
reoisomer also binds to NAT with high affinity, strongly suggests
that this compound must bind in a different manner to the other
stereoisomers. The addition of a large iodine atom to the phenyl
ring of 5 compared to the parent (2R,3R)-reboxetine compound,
means that the two aromatic rings are now more similar in size
and thus, this may allow these moieties to alternate binding pock-
ets, producing a similar 3-D shape at the C3-position as with ster-
eoisomers 3 and 4, resulting in similar levels of potency.
Cl
a
Cl
I
OH
I
10
18
8 Steps
I
O
O
OEt
Compounds 4 and 5 are significantly more selective for NAT
than the other mono-amine transporters. In particular, (2S,3S)-
iodoreboxetine 4 is approximately 50-fold and 25-fold more
selective for NAT than SERT and DAT respectively and thus, future
analogues of 4 may have both the potency and selectivity required
for developing an effective imaging agent for NAT.
N
H
5
Scheme 3. Reagents and conditions: (a) AD-Mix-b, MeSO2NH2, NaHCO3, t-BuOH,
H2O, 0 °C, 62%.
In conclusion, we have developed a new stereoselective route
for the synthesis of (2S,3S)-iodoreboxetine 4 and (2R,3R)-iodore-
boxetine 5 and have shown these compounds to have high affinity
and selectivity for NAT. The preparation and testing of all four ster-
eoisomers of this iodoreboxetine analogue has generated valuable
insight into how the different stereoisomers of reboxetine bind to
NAT and our work has revealed that the (2R,3S)- and (2S,3S)-ster-
eoisomers in particular, have the highest affinity for NAT. Work is
currently underway to further confirm this hypothesis and to gen-
erate more potent and selective analogues around a (2R,3S)- and
(2S,3S)-morpholine backbone for the development of an effective
SPECT imaging agent for NAT.
Table 1
Binding affinity of reboxetine analogues 4 and 5 with NAT, SERT and DAT (NAT data
for 2 and 3 included for comparison)10
Compound
NAT Ki (nM)a
SERT Ki (nM)b
DAT Ki (nM)b
I
320.8 9.0
—
—
O
O
OEt
N
H
Acknowledgements
210
Financial support from EPSRC (DTA award to N.K.J.), BBSRC
(Industrial Studentship with GSK to A.R.C.) and Medical Research
Scotland is gratefully acknowledged.
I
58.2 9.4
53.8 2.7
64.0 2.4
—
—
Supplementary data
O
O
Experimental procedures and spectroscopic data for all com-
pounds synthesised as well as details for competition binding as-
says. Supplementary data associated with this article can be
OEt
N
H
310
I
References and notes
1. (a) Amara, S. G.; Kuhar, M. J. Annu. Rev. Neurosci. 1993, 16, 73; (b) Blakely, R. D.;
Bauman, A. L. Curr. Opin. Neurobiol. 2000, 10, 328.
2. Zhu, M.-Y.; Ordway, G. A. J. Neurochem. 1997, 68, 134.
3. Spillmann, M. K.; Van der Does, A. J. W.; Rankin, M. A.; Vuolo, R. D.; Alpert, J. E.;
Nierenberg, A. A.; Rosenbaum, J. F.; Hayden, D.; Schoenfeld, D.; Fava, D.
Psychopharmacology 2001, 155, 123.
2793 480
1457 150
O
O
OEt
N
H
4. Biederman, J.; Spencer, T. Biol. Psychiatry 1999, 46, 1234.
4
5. Hisamichi, S.; Moon, A. Y.; Aoyagi, A.; Hara, T.; Abe, K.; Yamazaki, R.; Kumagae,
Y.; Naruto, S.; Koyama, K.; Marumoto, S.; Tago, K.; Toda, N.; Takami, K.;
Yamada, N.; Ori, M.; Kogen, H.; Kaneko, T. J. Pharmacol. Sci. 2003, 93, 95.
6. Tejani-Butt, S. M.; Yang, J. X.; Zaffar, H. Brain Res. 1993, 631, 147.
7. Hajos, M.; Fleishaker, J. C.; Filipiak-Reisner, J. K.; Brown, M. T.; Wong, E. H. F.
CNS Drug Rev. 2004, 10, 23.
8. Kanegawa, N.; Kiyono, Y.; Kimura, H.; Sugita, T.; Kajiyama, S.; Kawashima, H.;
Ueda, M.; Kuge, Y.; Saji, H. Eur. J. Nucl. Med. Mol. Imag. 2006, 33, 639.
9. Tamagnan, G. D.; Brenner, E.; Alagille, D.; Staley, J. K.; Haile, C.; Koren, A.; Early,
M.; Baldwin, R. M.; Tarazi, F. I.; Baldessarini, R. J.; Jarkas, N.; Goodman, M. M.;
Seibyl, J. P. Bioorg. Med. Chem. Lett. 2007, 17, 533.
I
646 142
716 20
O
O
OEt
N
H
10. Jobson, N. K.; Spike, R.; Crawford, A. R.; Dewar, D.; Pimlott, S. L.; Sutherland, A.
Org. Biomol. Chem. 2008, 6, 2369.
5
11. For recent examples, see: (a) Wilson, A. A.; Johnson, D. P.; Mozley, D.; Hussey,
D.; Ginovart, N.; Nobrega, J.; Garcia, A.; Meyer, J.; Houle, S. Nucl. Med. Biol. 2003,
30, 85; (b) Boot, J.; Cases, M.; Clark, B. P.; Findlay, J.; Gallagher, P. T.; Hayhurst,
a
Ki values are the mean of 3 separate determinations.
Ki values are the mean of 2 separate determinations.
b