Published on Web 11/23/2005
Programming the Internal Structure and Stability of Helical
Pores Self-Assembled from Dendritic Dipeptides via the
Protective Groups of the Peptide
Virgil Percec,*,† Andre´s E. Dulcey,† Mihai Peterca,‡ Monica Ilies,†
Monika J. Sienkowska,† and Paul A. Heiney‡
Contribution from the Roy & Diana Vagelos Laboratories, Department of Chemistry, UniVersity
of PennsylVania, Philadelphia, PennsylVania 19104-6323, and Department of Physics and
Astronomy, UniVersity of PennsylVania, Philadelphia, PennsylVania 19104-6396
Received September 17, 2005; E-mail: percec@sas.upenn.edu
Abstract: The synthesis of dendritic dipeptides (4-3,4-3,5)12G2-CH2-X-L-Tyr-L-Ala-OMe with X ) Boc,
Moc, and Ac; their self-assembly in bulk and in solution; and the structural and retrostructural analysis of
their supramolecular helical porous assemblies are reported. The dimensions, structure, internal order,
thermal stability of the supramolecular helical pores, and conformations of the dendron and supramolecular
dendrimer are programmed by the nature of the protective groups of the dipeptide. The ability of the
protective groups to program the structure of the helical pore reveals the simplest design strategy that
complements the more complex strategies based on the architecture of the dendron, the stereochemistry,
and the structure of the dipeptide.
Introduction
successful. Recently, we reported that amphiphilic dendrons
functionalized at their apex with a dipeptide create “dendritic
Natural pore-forming proteins form the channels that cells
use to communicate with one another and the outside world.1
They also form the coats of viruses,2 and some have pathogenic3
and antibiotic4 activity. Remodeled porous proteins are used in
synthetic systems, in the encapsulation of molecules,5 and in
molecular sensing.6 Synthetic strategies for obtaining porous
or tubular supramolecular assemblies have been elaborated.7
However, with few exceptions,8 attempts to create synthetic
pores capable of assembling into periodically ordered assemblies
that are stable both as solids and in solution have yet to be
dipeptides” that self-assemble both in solution and in the solid
state into supramolecular helical porous structures.9 This self-
assembly process is sufficiently robust to tolerate a range of
modifications9,10 to the structure of the peptide and dendron,
and preliminary data showed that these synthetic pores are
functional.9a Therefore, it is expected that the elucidation of the
principles of this self-assembly process will allow the design
of a variety of biologically inspired systems with functional
properties arising from their porous structure. The structure of
the pore is determined by the architecture of the dendron,9a,10a
the peptide,9a and the stereochemistry9a,10b of the dipeptide. Here,
we report that the protective groups of the dipeptide program
both the internal structure and the thermal stability of the helical
pores self-assembled from dendritic dipeptides. This unexpected
result provides the simplest and one of the most powerful
architectural tools available for programming the structure and
stability of porous protein mimics self-assembled from dendritic
dipeptides.9
* To whom correspondence should be addressed.
† Department of Chemistry.
‡ Department of Physics and Astronomy.
(1) (a) MacKinnon, R. Angew. Chem., Int. Ed. 2004, 43, 4265-4277. (b) Agre,
P. Angew. Chem., Int. Ed. 2004, 43, 4278-4290.
(2) (a) Klug, A. Angew. Chem., Int. Ed. Engl. 1983, 22, 565-582. (b) Klug,
A. Philos. Trans. R. Soc. London B 1999, 354, 531-535.
(3) Gouaux, E. J. Struct. Biol. 1998, 121, 110-122.
(4) Wallace, B. A. Biophys. J. 1986, 49, 295-306.
(5) Ishii, D.; Kinbara, K.; Ishida, Y.; Ishii, N.; Okochi, M.; Yohda, M.; Aida,
T. Nature 2003, 423, 628-632.
(6) Bayley, H.; Cremer, P. S. Nature 2001, 413, 226-230.
(7) (a) Nolte, R. J. M.; van Beijnen, A. J. M.; Neevel, J. G.; Zwikker, J. W.;
Verkley, A. J.; Drenth, W. Israel J. Chem. 1984, 24, 297-301. (b) Jullien,
L.; Lehn, J.-M. Tetrahedron Lett. 1988, 29, 3803-3806. (c) Cross, G. G.;
Fyles, T. M.; James, T. D.; Zojaji, M. Synlett 1993, 7, 449-460. (d) Gokel,
G. W.; Ferdani, R.; Liu, J.; Pajewski, R.; Shabany, H.; Uetrecht, P. Chem.
Eur. J. 2001, 7, 33-39. (e) Bong, D. T.; Clark, T. D.; Granja, J. R.; Ghadiri,
M. R. Angew. Chem., Int. Ed. 2001, 40, 988-1011. (f) Sakai, N.; Mareda,
J.; Matile, S. Acc. Chem. Res. 2005, 38, 79-87. (g) Rosselli, S.; Ramminger,
A.-D.; Wagner, T.; Silier, B.; Wiegand, S.; Ha¨ussler, W.; Lieser, G.;
Scheumann, V.; Ho¨ger, S. Angew. Chem., Int. Ed. 2001, 40, 3138-3141.
(h) Hill, D. J.; Mio, M. J.; Prince, R. B.; Hughes, T. S.; Moore, J. S. Chem.
ReV. 2001, 101, 3893-4012. (i) Fenniri, H.; Deng, B.-L.; Ribbe, A. E. J.
Am. Chem. Soc. 2002, 124, 11064-11072. (j) Hecht, S.; Khan, A. Angew.
Chem., Int. Ed. 2003, 42, 6021-6024. (k) Couet, J.; Jeyaprakash, J. D.;
Samuel, S.; Kopyshev, A.; Santer, S.; Biesalski, M. Angew. Chem., Int.
Ed. 2005, 44, 3297-3301.
(8) (a) Ghadiri, M. R.; Granja, J. R.; Milligan, R. A.; McRee, D. E.;
Khazanovich, N. Nature 1993, 366, 324-327. (b) Petitjean, A.; Cuccia,
L. A.; Lehn, J.-M.; Nierengarten, H.; Schmutz, M. Angew. Chem., Int. Ed.
2002, 41, 1195-1198. (c) Ohkita, M.; Lehn, J.-M.; Baum, G.; Fenske, D.
Chem. Eur. J. 1999, 5, 3471-3481. (d) Schmitt, J.-L.; Stadler, A.-M.;
Kyritsakas, N.; Lehn, J.-M. HelV. Chim. Acta 2003, 86, 1598-1624. (e)
Schmitt, J.-L.; Lehn, J.-M. HelV. Chim. Acta 2003, 86, 3417-3426.
(9) (a) Percec, V.; et al. Nature 2004, 430, 764-768. (b) Rouhi, M. Chem.
Eng. News 2004, 82 (33), 4. (c) Borman, S. Chem. Eng. News 2004, 82
(51), 53-61.
(10) (a) Percec, V.; Dulcey, A. E.; Peterca, M.; Ilies, M.; Miura, Y.; Edlund,
U.; Heiney, P. A. Aust. J. Chem. 2005, 58, 472-482. (b) Percec, V.; Dulcey,
A. E.; Peterca, M.; Ilies, M.; Ladislaw, J.; Rosen, B. M.; Edlund, U.; Heiney,
P. A. Angew. Chem., Int. Ed. 2005, 44, 6516-6521.
9
17902
J. AM. CHEM. SOC. 2005, 127, 17902-17909
10.1021/ja056313h CCC: $30.25 © 2005 American Chemical Society