Published on Web 10/15/2008
A General Method for Copper-Catalyzed Arylation of Arene
C-H Bonds
Hien-Quang Do, Rana M. Kashif Khan, and Olafs Daugulis*
Department of Chemistry, UniVersity of Houston, Houston, Texas 77204-5003
Received July 21, 2008; E-mail: olafs@uh.edu
Abstract: A general method for copper-catalyzed arylation of sp2 C-H bonds with pKa’s below 35 has
been developed. The method employs aryl halide as the coupling partner, lithium alkoxide or K3PO4 base,
and DMF, DMPU, or mixed DMF/xylenes solvent. A variety of electron-rich and electron-poor heterocycles
such as azoles, caffeine, thiophenes, benzofuran, pyridine oxides, pyridazine, and pyrimidine can be arylated.
Furthermore, electron-poor arenes possessing at least two electron-withdrawing groups on a benzene ring
can also be arylated. Two arylcopper-phenanthroline complex intermediates were independently
synthesized.
1. Introduction
was the first transition metal shown to promote carbon-hydrogen
bond arylation.7 In the past few years palladium-, rhodium-,
and ruthenium-catalyzed sp2 C-H bond arylation has undergone
explosive growth.8 In contrast, only scattered examples of
copper-promoted carbon-hydrogen bond arylation have been
described with most reports dating back to the 1960s and 1970s.9
The majority of the palladium-, rhodium-, or ruthenium-
catalyzed C-H bond functionalization examples involve regi-
oselective arylation of directing-group-containing arenes (Scheme
1A) or electron-rich heterocycles such as azoles or indoles.
Several recent reports describe functionalization of arenes
possessing no conventional directing groups.10 In the latter case
the regioselectivity issues are often unsolved and sometimes
only symmetrical arenes can be employed as the C-H coupling
component due to the possibility of regioisomer formation
(Scheme 1B). Perhaps the only general exception is found in
Compounds containing polyaryl moieties are common among
natural products, pharmaceuticals, and dyes. As a consequence,
regioselective formation of aryl-aryl bonds has attracted
substantial interest over the past century.1 The copper-promoted
biaryl synthesis was pioneered by Ullmann more than a hundred
years ago.2 Until the development of Stille, Suzuki, and Kumada
reactions3 in the 1970s, copper was the only metal widely used
for the formation of aryl-aryl bonds. Recently, copper-catalyzed
cross-coupling reactions are undergoing a resurgence. Efficient
methods for carbon-carbon,4 carbon-nitrogen,5 and carbon-
oxygen6 bond formation have been demonstrated by using
copper complexes. However, copper appears to be underutilized
as a catalyst for C-H bond functionalization even though it
(1) Hassan, J.; Se´vignon, M.; Gozzi, C.; Schulz, E.; Lemaire, M. Chem.
ReV. 2002, 102, 1359.
(7) (a) Steinkopf, W.; Leitsmann, R.; Hofmann, K. H. Liebigs Ann. Chem.
1941, 546, 180. (b) Sease, J. W.; Zechmeister, L. J. Am. Chem. Soc.
1947, 69, 270.
(2) Ullmann, F.; Bielecki, J. Chem. Ber. 1901, 34, 2174.
(3) Reviews: (a) Suzuki, A. Chem. Commun. 2005, 4759. (b) Nicolaou,
K. C.; Bulger, P. G.; Sarlah, D. Angew. Chem., Int. Ed. 2005, 44,
4442. (c) Miura, M. Angew. Chem., Int. Ed. 2004, 43, 2201. (d)
Stanforth, S. P. Tetrahedron 1998, 54, 263.
(8) Reviews: (a) Dick, A. R.; Sanford, M. S. Tetrahedron 2006, 62, 2439.
(b) Kakiuchi, F.; Chatani, N. AdV. Synth. Catal. 2003, 345, 1077. (c)
Seregin, I. V.; Gevorgyan, V. Chem. Soc. ReV. 2007, 36, 1173. (d)
Dyker, G. Angew. Chem., Int. Ed. 1999, 38, 1698. (e) Ritleng, V.;
Sirlin, C.; Pfeffer, M. Chem. ReV. 2002, 102, 1731. (f) Alberico, D.;
Scott, M. E.; Lautens, M. Chem. ReV. 2007, 107, 174. (g) Ackermann,
L. Synlett 2007, 507. (h) Campeau, L.-C.; Fagnou, K. Chem. Commun.
2006, 1253. (i) Yu, J.-Q.; Giri, R.; Chen, X. Org. Biomol. Chem. 2006,
4, 4041. (j) Lewis, J. C.; Bergman, R. G.; Ellman, J. A. Acc. Chem.
Res. 2008, 41, 1013.
(4) (a) Allred, G. D.; Liebeskind, L. S. J. Am. Chem. Soc. 1996, 118,
2748. (b) Thathagar, M. B.; Beckers, J.; Rothenberg, G. J. Am. Chem.
Soc. 2002, 124, 11858. (c) Ma, D.; Liu, F. Chem. Commun. 2004,
1934. (d) Kamata, K.; Yamaguchi, S.; Kotani, M.; Yamaguchi, K.;
Mizuno, N. Angew. Chem., Int. Ed. 2008, 47, 2407. (e) Usui, S.;
Hashimoto, Y.; Morey, J. V.; Wheatley, A. E. H.; Uchiyama, M. J. Am.
Chem. Soc. 2007, 129, 15102.
(5) (a) Klapars, A.; Antilla, J. C.; Huang, X.; Buchwald, S. L. J. Am.
Chem. Soc. 2001, 123, 7727. (b) Campbell, M. J.; Johnson, J. S. Org.
Lett. 2007, 9, 1521. (c) Hamada, T.; Ye, X.; Stahl, S. S. J. Am. Chem.
Soc. 2008, 130, 833. (d) Bolshan, Y.; Batey, R. A. Angew. Chem.,
Int. Ed. 2008, 47, 2109. (e) Antilla, J. C.; Baskin, J. M.; Barder, T. E.;
Buchwald, S. L. J. Org. Chem. 2004, 69, 5578. (f) del Amo, V.;
Dubbaka, S. R.; Krasovskiy, A.; Knochel, P. Angew. Chem., Int Ed.
2006, 45, 7838. (g) Shafir, A.; Lichtor, P. A.; Buchwald, S. L. J. Am.
Chem. Soc. 2007, 129, 3490. (h) Munro-Leighton, C.; Blue, E. D.;
Gunnoe, T. B. J. Am. Chem. Soc. 2006, 128, 1446. (i) Taillefer, M.;
Xia, N.; Ouali, A. Angew. Chem., Int. Ed. 2007, 46, 934. (j) A review
about copper catalysis in C-heteroatom bond formation: Ley, S. V.;
Thomas, A. W. Angew. Chem., Int. Ed. 2003, 42, 5400.
(9) (a) Bjo¨rklund, C.; Nilsson, M. Acta Chem. Scand. 1968, 22, 2338. (b)
Ljusberg, H.; Wahren, R. Acta Chem. Scand. 1973, 27, 2717. (c)
Nilsson, M. Tetrahedron Lett. 1966, 7, 679. (d) Forrest, J. J. Chem.
Soc. 1960, 574.
(10) (a) Fujita, K.-i.; Nonogawa, M.; Yamaguchi, R. Chem. Commun. 2004,
1926. (b) Fuchita, Y.; Oka, H.; Okamura, M. Inorg. Chim. Acta 1992,
194, 213. (c) Tani, M.; Sakaguchi, S.; Ishii, Y. J. Org. Chem. 2004,
69, 1221. (d) Jintoku, T.; Fujiwara, Y.; Kawata, I.; Kawauchi, T.;
Taniguchi, H. J. Organomet. Chem. 1990, 385, 297. (e) Ackerman,
L. J.; Sadighi, J. P.; Kurtz, D. M.; Labinger, J. A.; Bercaw, J. E.
Organometallics 2003, 22, 3884. (f) Proch, S.; Kempe, R. Angew.
Chem., Int. Ed. 2007, 46, 3135. (g) Hull, K. L.; Sanford, M. S. J. Am.
Chem. Soc. 2007, 129, 11904. (h) Brasche, G.; Garcia-Fortanet, J.;
Buchwald, S. L. Org. Lett. 2008, 10, 2207. (i) Dwight, T. A.; Rue,
N. R.; Charyk, D.; Josselyn, R.; DeBoef, B. Org. Lett. 2007, 9, 3137.
(j) Stuart, D. R.; Fagnou, K. Science 2007, 316, 1172.
(6) (a) Altman, R. A.; Shafir, A.; Choi, A.; Lichtor, P. A.; Buchwald,
S. L. J. Org. Chem. 2008, 73, 284. (b) Cai, Q.; Zou, B.; Ma, D. Angew.
Chem., Int. Ed. 2006, 45, 1276.
9
10.1021/ja805688p CCC: $40.75
2008 American Chemical Society
J. AM. CHEM. SOC. 2008, 130, 15185–15192 15185