compared to that of alkylidenecyclopropanes.3 It is therefore
highly desirable to develop general and efficient methods
for the synthesis of alkylidenecyclobutanes, especially the
functionalized ones. We report here that the copper-catalyzed
intramolecular C-vinylation of activated methylene com-
pounds with vinyl halides provides an efficient and con-
venient entry to functionalized alkylidenecyclobutanes.
The past few years have witnessed a rapid progress in the
formation of aryl (or vinyl) C-X (X ) O, N, S, etc.) bonds
via copper-catalyzed Ullmann coupling between aryl (or
vinyl) halides and heteroatom-centered nucleophiles.6 The
high stability and low cost of the copper catalysts enable
these transformations to be a useful complement to the more
extensively investigated Pd(0)-catalyzed processes.7 This
method was then successfully extended to the C-C bond
formation via copper-catalyzed C-arylation of active meth-
ylene compounds (the Hurtley coupling8).9 However, the
analogous C-vinylation is far less explored. Qian and Pei
reported the intermolecular cross-coupling of activated
methylene compounds with ꢀ-bromostyrenes.10 The only
other example was reported by us as the side reaction in the
intramolecular O-vinylation of 1,3-dicarbonyl compounds.11
Driven by our interest in Cu(I)-catalyzed intramolecular O-
and N-vinlyation reactions,11,12 we set out to study the Cu(I)-
catalyzed intramolecular C-vinylation.
Table 1. Optimization of the Synthesis of 2a from 1a
entrya ligand (mol %)b base (equiv) time (h) yield (%)c
1
2
3
4
5
6
7
8
L-1 (20)
L-1 (40)
L-2 (40)
L-3 (40)
L-4 (40)
L-5 (40)
L-6 (40)
L-6 (40)
L-6 (40)
L-6 (40)
L-6 (40)
none
Cs2CO3 (2)
Cs2CO3 (2)
Cs2CO3 (2)
Cs2CO3 (2)
Cs2CO3 (2)
Cs2CO3 (2)
Cs2CO3 (2)
Cs2CO3 (2)
K2CO3 (2)
K3PO4 (2)
Cs2CO3(3)
Cs2CO3 (3)
8
8
8
8
8
8
8
20
20
20
20
20
4
11
10
10
0
61
59
79
trace
20
92
trace
9
10
11
12
a Reaction conditions: 1a (0.3 mmol), CuI (0.03 mmol), ligand, base,
THF (10 mL), reflux. b L-1: N,N′-dimethylethylenediamine. L-2: 1,10-
phenanthroline. L-3: Me2NCH2CO2H·HCl. L-4: 2-hydroxybenzaldehyde
oxime. L-5: 2-isobutyrylcyclohexanone. L-6: L-proline. c Isolated yield based
on 1a.
Thus, diethyl 2-(3-bromobut-3-enyl)malonate (1a) was
chosen as the model substrate, which was readily available
by monoalkylation of diethyl malonates. Compound 1a was
first subjected to the following typical Ullmann coupling
conditions: CuI (10 mol %), N,N′-dimethylethylenediamine
(L-1, 20 mol %),13 Cs2CO3 (2 equiv) in refluxing THF. After
8 h, the expected cyclization product 2a was obtained in only
4% yield, while most of the starting material was recovered
(entry 1, Table 1). Increasing the amount of ligand L-1 to
40 mol % resulted in a slightly faster reaction (entry 2, Table
1). We then screened the ligands. 1,10-Phenanthroline (L-
2)14 and N,N-dimethylglycine hydrochloride (L-3)15 showed
an effect similar to L-1, while 2-hydroxybenzaldehyde oxime
(L-4)12a was inactive (entries 3-5, Table 1). On the other
hand, the use of 2-isobutyrylcyclohexanone (L-5)16 or
L-proline (L-6)17 as ligand led to a much faster reaction
(entries 6 and 7, Table 1). With the use of the more readily
available L-6, a higher yield (79%) of 2a could be achieved
by simply lengthening the reaction time to 20 h (entry 8,
Table 1).
We next examined the effects of different bases. It turned
out that Cs2CO3 is superior over K2CO3 and K3PO4 (entries
8-10, Table 1). To speed up the coupling reaction, we
increased the amount of Cs2CO3 to 3 equiv. To our delight,
a clean reaction was observed. The substrate 1a was all
consumed within 20 h, and the product cyclobutane 2a was
achieved in 92% isolated yield.
(5) (a) Cripps, H. N.; Williams, J. K.; Sharkey, W. H. J. Am. Chem.
Soc. 1959, 81, 2723. (b) Lukas, J. H.; Kouwenhoven, A. P.; Baardman, F.
Angew. Chem. 1975, 87, 740. (c) Snider, B. B.; Spindell, D. K. J. Org.
Chem. 1980, 45, 5017.
(6) For reviews, see:(a) Kunz, K.; Scholz, U.; Ganzer, D. Synlett 2003,
2428. (b) Ley, S. V.; Thomas, A. W. Angew. Chem., Int. Ed. 2003, 42,
5400. (c) Beletskaya, I. P.; Cheprakov, A. V. Coord. Chem. ReV. 2004,
248, 2337. (d) Deng, W.; Liu, L.; Guo, Q.-X. Chin. J. Org. Chem. 2004,
24, 150. (e) Dehli, J. R.; Legros, J.; Bolm, C. Chem. Commun. 2005, 973.
(f) Chemler, S. R.; Fuller, P. H. Chem. Soc. ReV. 2007, 36, 1153. (g) Evano,
G.; Blanchard, N.; Toumi, M. Chem. ReV. 2008, 108, 3054.
(7) For reviews, see:(a) Muci, A. R.; Buchwald, S. L. Top. Curr. Chem.
2002, 219, 131. (b) Hartwig, J. F. In Handbook of Organopalladium
Chemistry for Organic Synthesis; Negichi, E.-i., Ed.; Wiley: New York,
2002; Vol. 1, p 1051. (c) Littke, A. F.; Fu, G. C. Angew. Chem., Int. Ed.
2002, 41, 4176. (d) Prim, D.; Campagne, J. M.; Joseph, D.; Andrioletti, B.
Tetrahedron 2002, 58, 2041. (e) Yang, B. Y.; Buchwald, S. L. J. Organomet.
Chem. 1999, 576, 125. (f) Wolfe, J. P.; Wagaw, S.; Marcoux, J. -F.;
Buchwald, S. L. Acc. Chem. Res. 1998, 31, 805. (g) Hartwig, J. F. Angew.
Chem., Int. Ed. 1998, 37, 2046. (h) Hartwig, J. F. Acc. Chem. Res. 1998,
31, 852.
(8) Hurtley, W. R. H. J. Chem. Soc. 1929, 1870.
(9) (a) Hennessy, E. J.; Buchwald, S. L. Org. Lett. 2002, 4, 269. (b)
Cristau, H.-J.; Cellier, P. P.; Spindler, J.-F.; Taillefer, M. Chem.-Eur. J.
2004, 10, 5607. (c) Xie, X.; Cai, G.; Ma, D. Org. Lett. 2005, 7, 4693. (d)
Jiang, Y.; Wu, N.; Wu, H.; He, M. Synlett 2005, 2731. (e) Xie, X.; Chen,
Y.; Ma, D. J. Am. Chem. Soc. 2006, 128, 16050. (f) Lu, B.; Ma, D. Org.
Lett. 2006, 8, 6115. (g) Fang, Y.; Li, C. J. Org. Chem. 2006, 71, 6427. (h)
Lu, B.; Wang, B.; Zhang, Y.; Ma, D. J. Org. Chem. 2007, 72, 5337. (i)
Chen, Y.; Xie, X.; Ma, D. J. Org. Chem. 2007, 72, 9329. (j) Zeevaart,
J. G.; Parkinson, C. J.; de Koning, C. B. Tetrahedron Lett. 2007, 48, 3289.
(k) Chen, Y.; Wang, Y.; Sun, Z.; Ma, D. Org. Lett. 2008, 10, 625. (l) Wang,
B.; Lu, B.; Jiang, Y.; Zhang, Y.; Ma, D. Org. Lett. 2008, 10, 2761.
(10) Pei, L.; Qian, W. Synlett 2006, 1719.
With the optimized combination (combination A: 10 mol
% of CuI, 40 mol % of L-6, and 3 equiv of Cs2CO3) in
hand, we then examined the generality of this method. The
results are summarized in Table 2. Substrates 1b-1e bearing
different substituents at the C-3 or C-4 position, all afforded
the expected cyclization products in excellent yields (entries
(13) Klapars, A.; Huang, X.; Buchwald, S. L. J. Am. Chem. Soc. 2002,
124, 7421.
(11) Fang, Y.; Li, C. Chem. Commun. 2005, 3574.
(12) (a) Hu, T.; Li, C. Org. Lett. 2005, 7, 2035. (b) Lu, H.; Li, C. Org.
Lett. 2006, 8, 5365. (c) Fang, Y.; Li, C. J. Am. Chem. Soc. 2007, 129,
8092. (d) Pan, Y.; Lu, H.; Fang, Y.; Fang, X.; Chen, L.; Qian, J.; Wang, J.;
(14) Wolter, M.; Klapars, A.; Buchwald, S. L. Org. Lett. 2001, 3, 3803.
(15) Ma, D.; Cai, Q. Org. Lett. 2003, 5, 3799.
(16) Shafir, A.; Buchwald, S. L. J. Am. Chem. Soc. 2006, 128, 8762.
(17) Ma, D.; Cai, Q.; Zhang, H. Org. Lett. 2003, 5, 2453.
Li, C. Synthesis 2007, 1242. (e) Zhao, Q.; Li, C. Org. Lett. 2008, 10, 4037
.
5286
Org. Lett., Vol. 10, No. 22, 2008