Communication
RSC Advances
5 (a) R. R. Schmidt and W. Kinzy, Adv. Carbohydr. Chem. 14 Osmium-catalyzed dihydroxylation of 2,3-unsaturated glycal
Biochem., 1994, 50, 21–123; (b) B. G. Davis, J. Chem. Soc.,
Perkin Trans. 1, 2000, 2137–2160; (c) K. J. Jensen, J. Chem.
was performed under typical conditions.
Soc.,
Perkin
Trans.
1,
2002,
2219–2233;
(d)
A. V. Demchenko, Synlett, 2003, 1225–1240; (e) K. Toshima,
Carbohydr. Res., 2006, 341, 1282–1297; (f) D. P. Galonic and
D. Y. Gin, Nature, 2007, 446, 1000–1007; (g)
A. V. Demchenko, Handbook of Chemical Glycosylation,
Wiley-VCH, Weinheim, 2008; (h) A. F. Bochkov and
G. E. Zaikov, Chemistry of O-Glycosidic Bond: Formation and
Cleavage, Pergamon Press, 1979.
15 (a) M. Thomas, F. Rivault, I. Tranoy-Opalinski, J. Roche,
J.-P. Gesson and S. Papot, Bioorg. Med. Chem. Lett., 2007,
17, 983–986; (b) J. Tejler, H. Leffler and U. J. Nilsson,
Bioorg. Med. Chem. Lett., 2005, 15, 2343–2345.
6 For reviews, see: (a) M. J. McKay and H. M. Nguyen, ACS
Catal., 2012, 2, 1563–1595; (b) X. Li and J. Zhu, J.
Carbohydr. Chem., 2012, 31, 284–324.
16 (a) A. Patel and T. K. Lindhorst, J. Org. Chem., 2001, 66, 2674–
ˇ
´
2680; (b) R. Sardzık, G. T. Noble, M. J. Weissenborn,
A. Martin, S. J. Webb and S. L. Flitsch, Beilstein J. Org.
Chem., 2010, 6, 699–703, refrences cited within.
7 (a) S. J. Danishefsky and M. T. Bilodeau, Angew. Chem., Int.
´
Ed. Engl., 1996, 35, 1380–1419; (b) L. Somsk, Chem. Rev.,
17 (a) P. Sears and C.-H. Wong, Angew. Chem., 1999, 111, 2446–
2471; Angew. Chem., Int. Ed. Engl., 1999, 38, 2300–2324; (b)
M. Dubber and T. K. Lindhorst, Carbohydr. Res., 1998, 310,
35–41; (c) P. I. Kitov, J. M. Sadowska, G. Mulvey,
G. D. Armstrong, H. Ling, N. S. Pannu, R. J. Read and
D. R. Bundle, Nature, 2000, 403, 669–672.
´
´
2001, 101, 81–136; (c) A. Gomez and J. C. Lopez, Carbohydr.
Chem., 2009, 35, 289–309; (d) R. L. Halcomb and
S. J. Danishefsky, J. Am. Chem. Soc., 1989, 111, 6661–6666;
(e) D. M. Gordon and S. J. Danishefsky, Carbohydr. Res.,
1990, 206, 361–366.
8 (a) P. H. Seeberger, M. Eckhardt, C. E. Gutteridge and
S. J. Danishefsky, J. Am. Chem. Soc., 1997, 119, 10064–
10072; (b) Y.-J. Kim, V. Di Bussolo and D. Y. Gin, Org. Lett.,
2001, 3, 303–306.
18 See, for example, M. Mogemark and J. Kihlberg,
Glycopeptides, in The Organic Chemistry of Sugars, ed. D.
¨
E.Levy and P.Fugedi, CRC Taylor and Francis, Boca Raton,
2006, pp. 755–801.
9 (a) S. Hotha and S. Kashyap, J. Am. Chem. Soc., 2006, 128,
9620–9621; (b) S. Kashyap and S. Hotha, Tetrahedron Lett.,
2006, 47, 2021–2023; (c) S. Kashyap, S. R. Vidadala and
S. Hotha, Tetrahedron Lett., 2007, 48, 8960–8962; (d)
S. R. Vidadala, S. A. Thadke, S. Hotha and S. Kashyap, J.
Carbohydr. Chem., 2012, 31, 241–251; (e) S. Hotha and
S. Kashyap, J. Org. Chem., 2006, 71, 364–367; (f)
G. Narasimha, B. Srinivas, P. RadhaKrishna and
S. Kashyap, Synlett, 2014, 523–526; (g) B. Srinivas,
G. Narasimha, P. RadhaKrishna and S. Kashyap, Synthesis,
2014, 1191–1196; (h) B. Srinivas, T. R. Reddy,
P. RadhaKrishna and S. Kashyap, Synlett, 2014, 1325–1329.
10 (a) T. K. M. Shing, V. W.-F. Tai and E. K. W. Tam, Angew.
Chem., Int. Ed. Engl., 1994, 33, 2312–2313; (b) B. Plietker
and M. Niggemann, Org. Lett., 2003, 5, 3353–3356; (c)
B. Plietker and M. Niggemann, Org. Biomol. Chem., 2004, 2,
1116–1124; (d) B. Plietker and M. Niggemann, J. Org.
Chem., 2005, 70, 2402–2405; (e) P. Tiwari and A. K. Misra, J.
Org. Chem., 2006, 71, 2911–2913; (f) W. J. Sanders and
L. L. Kiessling, Tetrahedron Lett., 1994, 35, 7335–7338; (g)
A. B. Charette, J.-F. Marcoux and B. Cote, Tetrahedron Lett.,
1991, 32, 7215–7218.
19 D. J. Lee, R. Kowalczyk, V. J. Muir, P. M. Rendleb and
M. A. Brimble, Carbohydr. Res., 2007, 342, 2628–2634.
20 General experimental procedure for Ru-catalyzed one-pot
glycosylation–dihydroxylation method: (1) to
a stirred
solution of 3,4,6-tri-O-acetyl-D-glucal (1 equiv.) and
1
acceptor (1.2 equiv.) in anhydrous acetonitrile (2 mL
mmolꢁ1) under an atmosphere of argon was added RuCl3
(5 mol%) at room temperature. The reaction mixture was
stirred until the complete consumption of the starting
material (glycal), adjudged by TLC. (2) The reaction
ꢀ
mixture was cooled at 0 C and diluted with EtOAc (2 mL).
An aqueous solution of NaIO4 (1.5 equiv.) and CeCl3$7H2O
(5 mol%) in 1 mL H2O was added to above mentioned
reaction and stirred vigrously. The reaction deemed
complete by TLC in utmost 10 min to obtain
corresponding diols. The reaction was quenched with
saturated NaHCO3 (10 mL), diluted with EtOAc (10 mL),
and extracted with EtOAC (3 ꢂ 30 mL). The combined
organic layes were washed with brine solution, dried over
anhydrous Na2SO4, concentrated in vacuo and puried by
silica gel coloumn chromatography (Hexanes-EtOAc 2 : 1).
Following acetylation of diol in CH2Cl2 (5 mL), pyridine
(0.5 mL), and acetic anhydride (5 equiv.) in the presence of
catalytic amount of DMAP gave corresponding per-
acetylated glycoside. Following usual work-up and
purication by chromatography (silica gel, hexanes-EtOAc)
afforded desired a-D-mannopyranosides (3a–s) as major
product in good yields. All the compounds were conrmed
by 1H NMR, 13C NMR and MS/HRMS spectroscopy and
overall data were in complete agreement with the assigned
structures.
11 In contrast, the in situ dihydroxylation step without
CeCl3$7H2O usually takes 45 min, presumably a result of
slow hydrolytic dissociation of Ru-complex. However,
results were consistent with that of previous experiment in
terms of stereochemical outcome and chemical yields.
12 See ESI.†
13 (a) H. Kim, H. Men and C. Lee, J. Am. Chem. Soc., 2004, 126,
´
´
1336–1337; (b) M. Polakova, M. U. Roslund, F. S. Ekholm,
T. Saloranta and R. Leino, Eur. J. Org. Chem., 2009, 6, 870–
888.
This journal is © The Royal Society of Chemistry 2014
RSC Adv., 2014, 4, 46327–46331 | 46331