Table 1 RCM of several dienes over 7b and 7d
Notes and references
Catalyst Substratea
Product
Run Conv (%)b
1 Selected reviews: R. H. Grubbs, S. J. Miller and G. C. Fu, Acc.
Chem. Res., 1995, 28, 446; A. Furstner, Angew. Chem., Int. Ed., 2000,
39, 3012; A. H. Hoveyda and R. R. Schrock, Chem.–Eur. J., 2001, 7,
945; R. H. Grubbs, Handbook of Metathesis, Wiley-VCH, Weinheim,
2003, vol. 1–3; R. H. Grubbs, Tetrahedron, 2004, 60, 7117.
2 P. Schwab, M. B. France, J. W. Ziller and R. H. Grubbs, Angew.
Chem., Int. Ed. Engl., 1995, 34, 2039; P. Schwab, R. H. Grubbs and
J. W. Ziller, J. Am. Chem. Soc., 1996, 118, 100.
3 Ruthenium residue levels must be less than 5 ppm and 0.5 ppm for
oral and parental drug products according to the guidelines of
European Agency for the Evaluation of Medicinal Products. For
details, see: A. Thayer, Chem. Eng. News, 2005, 83, 55.
¨
7b
1
4
7
10
97
97
96
97
11
10
7b
1
3
5
7
93
97
93
89
13
15
4 Selected articles: Q. Yao, Angew. Chem., Int. Ed., 2000, 39, 3896;
N. Audic, H. Clavier, M. Mauduit and J.-C. Guillemin, J. Am.
Chem. Soc., 2003, 125, 9248; Q. Yao and Y. Zhang, Angew. Chem.,
Int. Ed., 2003, 42, 3395; Q. Yao and Y. Zhang, J. Am. Chem. Soc.,
12
7b
1
3
5
7
91
91
73
77
2004, 126, 74; A. Furstner, L. Ackermann, K. Beck, H. Hori, D.
¨
Koch, K. Langemann, M. Liebl, C. Six and W. Leitner, J. Am.
Chem. Soc., 2001, 123, 9000.
5 Recent articles: A. Michrowska, L. Gulajski and K. Grela, Chem.
Commun., 2006, 841; C. Hongfa, J. Tian, H. S. Bazzi and D. E.
Bergbreiter, Org. Lett., 2007, 9, 3259; D. Rix, H. Clavier, Y.
Coutard, L. Gulajski, K. Grela and M. Mauduit, J. Organomet.
Chem., 2006, 691, 5397; S.-W. Chen, J. H. Kim, C. E. Song and
S.-G. Lee, Org. Lett., 2007, 9, 3845; S. H. Hong and R. H. Grubbs,
Org. Lett., 2007, 9, 1955; F. Gallou, S. Saim, K. J. Koenig, D.
Bochniak, S. T. Horhota, N. K. Yee and C. H. Senanayake, Org.
Process Res. Dev., 2006, 10, 937.
14c
7b
1
67
99e
45
20
2
3
17
16d
7d
1
4
7
10
83
78
89
79
6 J. S. Kingsbury, J. P. A. Harrity, P. J. Bonitatebus, Jr and A. H.
Hoveyda, J. Am. Chem. Soc., 1999, 121, 791; S. Gessler, S. Randl
and S. Blechert, Tetrahedron Lett., 2000, 41, 9973.
7 J. S. Kingsbury, S. B. Garber, J. M. Giftos, B. L. Gray, M. M.
Okamoto, R. A. Farrer, J. T. Fourkas and A. H. Hoveyda, Angew.
Chem., Int. Ed., 2001, 40, 4251.
19
21
18c
7d
1
4
7
10
99
97
95
87
8 P. Schmidt-Winkel, W. W. Lukens, Jr, D. Zhao, P. Yang, B. F.
Chmelka and G. D. Stucky, J. Am. Chem. Soc., 1999, 121, 254; P.
Schmidt-Winkel, W. W. Lukens, Jr, P. Yang, D. I. Margolese, J. S.
Lettow, J. Y. Ying and G. D. Stucky, Chem. Mater., 2000, 12, 686;
J. S. Lettow, Y. J. Han, P. Schmidt-Winkel, P. Yang, D. Zhao, G.
D. Stucky and J. Y. Ying, Langmuir, 2000, 16, 8291; J. S. Lettow, T.
M. Lancaster, C. J. Glinka and J. Y. Ying, Langmuir, 2005, 21,
5738; Y. Han and J. Y. Ying, Angew. Chem., Int. Ed., 2005, 44, 288.
20
a
b
Conditions: 5 mol% of 7, 50 1C, 1 h, 0.05 M in DCM. Determined
by gas chromatography (GC) or liquid chromatography (LC).
d
Performed for 2 h. Performed for 4 h. Performed for 20 h.
9 Selected recent articles: K. Vehlow, S. Maechling, K. Kohler and S.
¨
Blechert, J. Organomet. Chem., 2006, 691, 5267; F. Michalek, D.
c
e
Madge, J. Ruhe and W. Bannwarth, J. Organomet. Chem., 2006,
¨
¨
691, 5172; X. Elias, R. Pleixats, M. W. C. Man and J. J. E.
Moreau, Adv. Synth. Catal., 2007, 349, 1701.
10 Y. Zhang, L. Zhao, S. S. Lee and Jackie Y. Ying, Adv. Synth.
Catal., 2006, 348, 2027; T. M. Lancaster, S. S. Lee and J. Y. Ying,
Chem. Commun., 2005, 3577; S. S. Lee and J. Y. Ying, J. Mol.
Catal. A: Chem., 2006, 256, 219; X. Huang and J. Y. Ying, Chem.
Commun., 2007, 1825; N. Erathodiyil, S. Ooi, A. M. Seayad, Y.
Han, S. S. Lee and J. Y. Ying, Chem.–Eur. J., 2008, 14, 3118.
11 K. Grela, M. Tryznowski and M. Bieniek, Tetrahedron Lett., 2002,
43, 9055.
(substrate 18) was especially effective with 7d as the catalyst.
The reaction efficiency appeared sustainable, although the
initial run was not performed to completion. The seven-
membered ring 21 was formed more efficiently than its five-
membered ring analog 15, exhibiting good conversions up to
10 consecutive runs.
12 S. S. Lee, S. Hadinoto and J. Y. Ying, Adv. Synth. Catal., 2006,
348, 1248; Y. Han, S. S. Lee and J. Y. Ying, Chem. Mater., 2006,
18, 643; Y. Han, S. S. Lee and J. Y. Ying, Chem. Mater., 2007, 19,
2292; Y. Han, S. S. Lee and J. Y. Ying, Stud. Surf. Sci. Catal.,
2007, 165, 829.
13 Spectroscopic evidence of the return of ruthenium carbene com-
plex: J. S. Kingsbury and A. H. Hoveyda, J. Am. Chem. Soc., 2005,
127, 4510.
14 J. Lim, S. S. Lee, S. N. Riduan and J. Y. Ying, Adv. Synth. Catal.,
2007, 349, 1066.
15 An example of RCM application in pharmaceutical industry:
T. Nicola, M. Brenner, K. Donsbach and P. Kreye, Org. Process
Res. Dev., 2005, 9, 513.
In conclusion, we have successfully developed highly active
and recyclable MCF-supported ruthenium catalysts for RCM
by optimizing the linker group and microenvironment. These
cost-effective and environmentally benign heterogenized cata-
lysts are of interest for industrial processes.15 The remarkably
low leaching of ruthenium species would be particularly
attractive in pharmaceuticals manufacturing.
This work is supported by the Institute of Bioengineering
and Nanotechnology (Biomedical Research Council, Agency
for Science, Technology and Research, Singapore).
ꢀc
This journal is The Royal Society of Chemistry 2008
4314 | Chem. Commun., 2008, 4312–4314