2202
A. R. Ellwood et al.
LETTER
with 2% citric acid (2 × 50 mL). The combined aqueous
washings were extracted with CH2Cl2 (50 mL), and the
combined organic layers were dried (MgSO4) and
magnitude of the diastereoselectivity, and reverses its
sense. Furthermore, the bromine substituent can be re-
moved after the rearrangement step.
concentrated in vacuo to give the crude product (190 mg,
76%). Flash chromatography (SiO2; EtOAc–PE, 1:19)
afforded 18b (130 mg, 52%) as a pale yellow oil; Rf 0.43
(EtOAc–PE, 15:85); [a]D20 +31.5 (c = 1.08, CHCl3). IR
(CHCl3 cast): 2983, 2934, 2874 (CH), 1625 (C=C), 1499,
1452, 1316 (C=S) cm–1. 1H NMR (500 MHz, CDCl3): d =
1.28 (3 H, s) and 1.34 [3 H, s, C(CH3)2], 2.30–2.40 (2 H, m,
NCH2CH2), 3.21 (1 H, br t, J = 8.5 Hz, CHC=S), 3.51 (1 H,
ddd, J = 11.0, 8.5, 7.0 Hz) and 3.62 (1 H, ddd, J = 11.0, 8.8,
5.2 Hz, NCH2CH2), 3.76 (1 H, dd, J = 8.5, 6.8 Hz, CHHO),
3.88 [1 H, dd, J = 10.1, 1.8 Hz, H2C=C(Br)CH], 4.10 (1 H,
dd, J = 8.5, 6.1 Hz, CHHO), 4.44 (1 H, ddd, J = 10.1, 6.8, 6.1
Hz, CHO), 4.79 (1 H, d, J = 14.6 Hz) and 5.16 (1 H, d, J =
14.6 Hz, PhCH2), 5.51 (1 H, dd, J = 1.8, 0.5 Hz) and 5.90 (1
In conclusion, we have ensured high levels of diastereose-
lectivity in the thia-Claisen rearrangement of chiral sub-
strates through the judicious exploitation of allylic strain.
Further studies into these reactions, and their application
in synthesis, are ongoing.
Acknowledgment
We thank Dr. Abil Aliev for assistance with NMR experiments, and
UCL Graduate School and EPSRC for funding.
H, dd, J = 1.8, 0.4 Hz, C=CH2), 7.26–7.32 (5 H, m, ArH). 13
NMR (125 MHz, CDCl3): d = 22.2 (NCH2CH2), 26.0 and
26.5 [C(CH3)2], 51.9 (PhCH2), 52.8 (NCH2CH2), 55.2
C
References and Notes
(1) Castro, A. M. Chem. Rev. 2004, 104, 2939.
(2) For reviews of asymmetric [3,3]-sigmatropic
rearrangements, see: (a) Enders, D.; Knopp, M.; Schiffers,
R. Tetrahedron: Asymmetry 1996, 7, 1847. (b) Ito, H.;
Taguchi, T. Chem. Soc. Rev. 1999, 29, 43. (c)Nubbemeyer,
U. Synthesis 2003, 961.
(3) (a) Suzuki, T.; Sato, E.; Kamada, S.; Tada, H.; Unno, K.;
Kametani, T. J. Chem. Soc., Perkin Trans. 1 1986, 387.
(b) Takano, S.; Kurotaki, A.; Takahashi, M.; Ogasawara, K.
J. Chem. Soc., Perkin Trans. 1 1987, 91. (c) Nemoto, H.;
Satoh, A.; Ando, M.; Fukumoto, K. J. Chem. Soc., Perkin
Trans. 1 1991, 1309.
[H2C=C(Br)CH], 56.9 (CHC=S), 68.7 (CH2O), 74.7 (CHO),
110.1 [C(CH3)2], 119.8 (C=CH2), 127.9, 128.2 and 128.7
(aromatic CH), 133.5 (C=CH2), 135.3 (aromatic C), 203
(C=S). MS (CI+, CH4): m/z = 410 (16), 412 (14) [MH+], 352
(46), 354 (50) [MH+ – Me2CO], 338 (63), 330 (100) [MH+ –
HBr]. HRMS: m/z [MH+] calcd for C19H2579BrNO2S:
410.0789; found: 410.0799.
(16) X-ray data: C16H21NO2S, M = 291.40; T = 150(2) K;
orthorhombic, P212121, a = 8.6108(10), b = 13.2760(16),
c = 13.3204(16) Å; Z = 4; Dc = 1.271 g/cm3; F(000) = 624;
m(Mo–Ka) = 0.214 mm–1; 12892 reflection, 3586
(4) Hatakeyama, S.; Saijo, K.; Takano, S. Tetrahedron Lett.
independent (Rint = 0.0336) measured on a Bruker SMART
APEX CCD diffractometer using Mo–Ka radiation; R1 =
0.0350, wR2 = 0.0834 (3346 reflections F2 >2s F2), R1 =
0.0382, wR2 = 0.0855 (all data). Atomic coordinates and
further crystallographic details have been deposited at the
Cambridge Crystallographic Data Centre, deposition
number CCDC 687669. Copies of these data can be obtained
by applying to CCDC, University Chemical Laboratory,
Lensfield Road, Cambridge CB2 1EW, U.K.; fax: +44
(1223)336033; email: deposit@ccdc.cam.ac.uk.
1985, 26, 865.
(5) Tadano, K.; Minami, M.; Ogawa, S. J. Org. Chem. 1990, 55,
2108.
(6) Cha, J. K.; Lewis, S. C. Tetrahedron Lett. 1984, 25, 5263.
(7) Désert, S.; Metzner, P. Tetrahedron 1992, 48, 10327.
(8) Mulzer, J.; Shanyoor, M. Tetrahedron Lett. 1993, 34, 6545.
(9) High levels of asymmetric induction have also been
observed in zwitterionic Claisen-type rearrangements
involving either sulfide-ketene adducts or deprotonated N-
acylammonium salts. See: (a) Nubbemeyer, U.; Öhrlein, R.;
Gonda, J.; Ernst, B.; Belluš, D. Angew. Chem., Int. Ed. Engl.
1991, 30, 1465. (b) Nubbemeyer, U. J. Org. Chem. 1996,
61, 3677.
(10) (a) Takano, S.; Hirama, M.; Ogasawara, K. Chem. Lett.
1982, 11, 529. (b) Tamaru, Y.; Furukawa, Y.; Mizutani, M.;
Kitao, O.; Yoshida, Z. J. Org. Chem. 1983, 48, 3631.
(c) Mortimer, A. J. P.; Pang, P. S.; Aliev, A. E.; Tocher, D.
A.; Porter, M. J. Org. Biomol. Chem. 2008, 6, DOI: 10.1039/
b806031b.
(17) Zhong, Y. L.; Shing, T. K. M. J. Org. Chem. 1997, 62, 2622.
(18) Data for 21: Rf 0.23 (EtOAc–PE, 30:70); [a]D20 –73.2 (c =
0.40, CHCl3). IR (CHCl3 cast): 3399 (br, OH), 2923, 2875
(CH), 1635 (C=C), 1508, 1453, 1310 (C=S) cm–1. 1H NMR
(500 MHz, CDCl3): d = 1.87 (1 H, ddt, J = 12.8, 8.8, 6.1 Hz)
and 2.17 (1 H, dtd, J = 12.8, 9.1, 5.9 Hz, NCH2CH2), 2.62 (1
H, br s, OH), 3.02 (1 H, m, H2C=CHCH), 3.33 (1 H, ddd,
J = 9.1, 6.3, 3.6 Hz, CHC=S), 3.44 (1 H, ddd, J = 11.2, 9.1,
6.1 Hz) and 3.49 (1 H, ddd, J = 11.2, 8.8, 5.9 Hz, NCH2CH2),
3.71 (1 H, dd, J = 11.5, 6.5 Hz) and 3.84 (1 H, dd, J = 11.5,
9.1 Hz, CH2OH), 4.90 (1 H, d, J = 14.3 Hz) and 5.05 (1 H, d,
J = 14.3 Hz, PhCH2), 5.10 (1 H, dd, J = 10.5, 1.8 Hz) and
5.20 (1 H, dd, J = 17.3, 1.8 Hz, CH=CH2), 5.64 (1 H, ddd,
J = 17.3, 10.5, 8.8 Hz, CH=CH2), 7.28–7.34 (5 H, m, ArH).
13C NMR (125 MHz, CDCl3): d = 23.1 (NCH2CH2), 49.3
(H2C=CHCH), 51.8 (PhCH2), 52.8 (NCH2CH2), 55.1
(CHC=S), 63.0 (CH2OH), 118.4 (CH=CH2), 128.1, 128.3
and 128.8 (aromatic CH), 134.9 (aromatic C), 135.6
(CH=CH2), 202.7 (C=S). MS (CI+, CH4): m/z = 290 (22)
[M + C2H5]+, 262 (100) [MH+], 244 (32) [MH+ – H2O], 191
(25). HRMS: m/z [M + H+] calcd for C15H20NOS: 262.1266;
found: 262.1260.
(11) Marshall, J. A.; Trometer, J. D.; Cleary, D. G. Tetrahedron
1999, 45, 391.
(12) Borcherding, D. R.; Narayanan, S.; Hasobe, M.; McKee, J.
G.; Keller, B. T.; Borchardt, R. T. J. Med. Chem. 1988, 31,
1729.
(13) Hoffmann, R. W. Chem. Rev. 1989, 89, 1841.
(14) McKenna, C. E.; Khawli, L. A. J. Org. Chem. 1986, 51,
5467.
(15) A mixture of thioamide 15 (116 mg, 0.61 mmol), bromide
14b (200 mg, 0.67 mmol), MeCN (1 mL) and 4 Å molecular
sieves (250 mg) was stirred under an argon atmosphere for 4
d. Further MeCN (2 mL) was added and the mixture warmed
to 35 °C. Et3N (94 mL, 0.67 mmol) was added and the
resulting solution was stirred at 35 °C for 7 h. The mixture
was cooled to r.t., diluted with CH2Cl2 (30 mL) and washed
For 22: [a]D20 +71.4 (c = 0.28, CHCl3).
(19) Rossi, R.; Bellina, F.; Raugei, E. Synlett 2000, 1749.
Synlett 2008, No. 14, 2199–2203 © Thieme Stuttgart · New York