6520
J. Wang et al. / Tetrahedron Letters 49 (2008) 6518–6520
11. Williams, D. R.; Benbow, J. W.; Sattleberg, T. R.; Ihle, D. C. Tetrahedron Lett.
2001, 42, 8597–9601.
12. Sharma, P. K.; Kumar, S.; Kumar, P.; Nielsen, P. Tetrahedron Lett. 2007, 48,
8704–8708.
diluted HCl solution to afford an aqueous solution of 3-butyl-1-
methylimidazolinium chloride. The solution was then dehydrated
in vacuo, followed by anion exchange with sodium borohydride
in anhydrous acetonitrile to give the regenerated [bmim][BH4]. In
the demonstration reduction of 2-benzylidenemalono-nitrile, the
regenerated [bmim][BH4] can be reused at least three times with-
out losing its activity (Table 2).
In conclusion, a new reducing reagent, 3-butyl-1-methylimida-
zolium borohydride ([bmim][BH4]), has been synthesized and
successfully applied to the chemoselective reduction of carbon–
carbon double bonds in conjugated alkenes as well as to the selec-
13. (a) Boechat, N.; Costa, J. C. S.; Mengdonca, J. S.; Oliveria, P. S. M.; Souza, M. V. N.
Tetrahedron Lett. 2004, 45, 6021–6022; (b) Periasamy, M.; Muthukumaragopal,
G. P.; Sanjeevakumar, N. Tetrahedron Lett. 2007, 48, 6966–6969; (c)
Papavassolopoulou, E.; Christofis, P.; Terzoglou, D.; Minakakis, P. M.
Tetrahedron Lett. 2007, 48, 8323–8325; (d) Tudge, M.; Mashima, H.; Savarin,
C.; Humphrey, G.; Davies, I. Tetrahedron Lett. 2008, 49, 1041–1044.
14. (a) Kanth, J. V. B.; Periasamy, M. J. Org. Chem. 1991, 56, 5964–5965; (b) Falorni,
M.; Porcheddu, A.; Taddei, M. Tetrahedron Lett. 1999, 40, 4395–4396; (c) Tale, R.
H.; Patil, K. M.; Dapurkar, S. E. Tetrahedron Lett. 2003, 44, 3427–3428; (d)
Haldar, P.; Guin, J.; Ray, J. K. Tetrahedron Lett. 2005, 46, 1071–1074; (e) Zhou, Y.
H.; Gao, G. H.; Li, H.; Qu, J. P. Tetrahedron Lett. 2008, 49, 3260–3263.
15. Takeuchi, M.; Kano, K. Organometallics 1993, 12, 2059–2064.
tive reduction of the
a,b-carbon–carbon double bonds in highly
activated ,b, ,d-unsaturated alkenes. This method has the advan-
a
c
16. Bandgar, B. P.; Wadgaonkar, P. P. Synth. Commun. 1995, 25, 863–869.
17. Dosa, P.; Kronish, I.; McCallum, J.; Schwartz, J.; Barden, M. C. J. Org. Chem. 1996,
61, 4886–4887.
tage of good reductive activity, room temperature reaction, no
need for catalyst and easy reagent regeneration. Further work to
apply this reducing reagent to other substrates is in progress.
18. General procedure for synthesis of [bmim][BH4]: A mixture of 1-methylimidazole
(4.1 g, 0.05 mol) and 1-bromobutane (6.85 g, 0.05 mol) in absence of solvent
was heated with stirring at 80 °C for 3 h. Then, the product was washed with
dimethyl ether and dried in vacuum to afford [bmim]Br. On completion, 50 ml
of CH3CN and 2.28 g NaBH4 (0.06 mol) were added in sequence. The mixture
was stirred for 24 h at room temperature under nitrogen. After filtrating, the
filtrate was evaporated in vacuo to get [bmim][BH4] (7.39 g, 0.048 mol, yield
96%) as a viscous liquid: 1H NMR (CDCl3, 400 MHz): d 9.85 (s, 1H), 7.46 (s, 1H),
7.38 (s. 1H), 4.27 (t, J = 7.2 Hz, 2H), 4.05 (s, 3H), 1.85–1.92 (m, 2H), 1.32–1.41
(m, 2H), 0.94 (t, J = 7.6 Hz, 3H), ꢀ0.21–0.41 (4H); 13C NMR (CDCl3, 100 MHz): d
137.29, 123.60, 122.12, 49.73, 36.52, 32.08, 19.36, 13.36; HRMS (ESI) calcd for
C16H34BNþ4 (2 M-BHꢀ4 ) 293.2871, found 293.2897.
Acknowledgements
Financial support for this work from the NSFC (Grant
20676033), Shanghai Commission of Science and Technology and
Shanghai Leading Academic Discipline Project (Project Number:
B507) are gratefully acknowledged.
19. General procedure for reduction: (a) Representative procedure for the reduction
of 2-benzylidenemalononitrile (Table 1, entry 1): To a stirred solution of 2-
benzylidenemalononitrile (154 mg, 1 mmol) in acetonitrile (3 ml) and water
(0.5 ml), [bmim][BH4] (185 mg, 1.2 mmol) was added at room temperature.
Stirring was continued for another 0.5 h (monitored by TLC), and the solvent
was evaporated to leave water. Then, 10 ml water was added to the residue to
quench the remaining [bmim][BH4], and 10 ml diethyl ether was added to
extract the organic compound for three times. The combined ether extract was
washed with brine, dried (Na2SO4) and evaporated to leave the crude products
which were purified by column chromatography over silica gel to furnish the
pure 2-benzylmalononitrile (0.137 mg, 88%) as a white solid: 1H NMR(CDCl3,
400 MHz): d 7.33–7.43 (m, 5H), 3.92 (t, J = 7.0 Hz, 1H), 3.31 (d, J = 3.6 Hz, 2H);
13C NMR (CDCl3,100 MHz): d 132.91, 129.31 (2C), 129.11 (2C), 128.84, 112.11
(2C), 36.78, 24.99; MS (GC/MS) m/z: 156(M+), 91. This procedure was followed
for the reduction of all the substrates listed in Table 1. (b) Procedure for the
reduction of butyl acrylate (Table 1, entry 18,): To a stirred solution of butyl
acrylate (0.128 mg, 1 mmol) and water (0.2 ml), [bmim][BH4] (185 mg,
1.2 mmol) was added at room temperature. Stirring was continued for
another 2 h. Then 5 ml water was added to quench the reaction, and 5 ml
diethyl ether was added to extract the organic compound for three times. The
combined ether extract was washed with brine, dried (Na2SO4) and evaporated
to leave the crude products as a colourless liquid. The yield of product was 88%
(GC).
Supplementary data
Supplementary data associated with this article can be found, in
References and notes
1. Basu, B.; Bhuiyan, M. M. H.; Das, P.; Hossain, I. Tetrahedron Lett. 2003, 44, 8931–
8934.
2. Basu, B.; Das, S.; Das, P.; Nanka, A. K. Tetrahedron Lett. 2005, 46, 8591–8593.
3. Garden, S. J.; Guimarãs, G. R. W.; Corréa, M. B.; Oliveria, C. A. F.; Pinto, A. C.;
Alencastro, R. B. J. Org. Chem. 2003, 68, 8815–8822.
4. Hutchins, R. O.; Rotstein, D.; Natale, N.; Fanelli, J. J. Org. Chem. 1976, 41, 3328–
3329.
5. Ranu, B. C.; Dutta, J.; Guchhait, S. K. Org. Lett. 2001, 3, 2603–2605.
6. (a) Ranu, B. C.; Samanta, S. J. Org. Chem. 2003, 68, 7130–7132; (b) Ranu, B. C.;
Samanta, S. Tetrahedron 2003, 59, 7901–7906; (c) Ranu, B. C.; Samanta, S.
Tetrahedron Lett. 2002, 43, 7405–7407.
7. (a) Xue, D.; Chen, Y. C.; Cui, X.; Wang, Q. W.; Zhu, J.; Deng, J. G. J. Org. Chem.
2005, 70, 3584–3591; (b) Liu, W. G.; Cui, X.; Cun, L. F.; Zhu, J.; Deng, J. G.
Tetrahedron: Asymmetry 2005, 16, 2525–2530; (c) Chen, Y. C.; Xue, D.; Deng, J.
G.; Cui, X.; Zhu, J.; Jiang, Y. Z. Tetrahedron Lett. 2004, 45, 1555–1558; (d) Adair,
G. R. A.; Kappoor, K. K.; Scolan, A. L.; Williams, J. M. J. Tetrahedron Lett. 2006, 47,
8943–8944.
20. Characterization of the products. Entry 14: 1H NMR (CDCl3, 400 MHz): d 7.34 (d,
J = 4.4 Hz, 2H), 6.88 (d, J = 4.4 Hz, 2H), 6.65 (d, J = 7.8 Hz, 1H), 6.01–6.08 (m,
1H), 3.79–3.83 (m, 4H), 2.89–2.93 (m, 2H); 13C NMR (CDCl3, 100 MHz) d
159.95, 136.71, 128.29, 127.95, 127.88 (2C), 117.30, 114.14 (2C), 112.19, 55.33,
34.41, 23.55; MS (GC/MS) m/z: 212(M+), 147, 132, 115, 103, 91; HRMS (EI)
calcd for C13H12N2O (M) 212.0950, found 212.0950. Entry 16: 1H NMR (CDCl3,
400 MHz): d 7.3 (d, J = 4.2 Hz, 2H), 6.86 (d, J = 4.2 Hz, 2H), 6.53 (d, J = 7.6 Hz,
1H), 6.00–6.08 (m, 1H), 4.28 (q, J1 = 7.1 Hz, J2 = 3.6 Hz, 2H), 3.82 (s, 3H), 3.61 (t,
J = 6.4 Hz, 1H), 2.84 (t, J = 3.2 Hz, 2H), 1.32 (t, J = 6.8 Hz, 3H); 13C NMR (CDCl3,
100 MHz) d 165.57, 159.49, 134.42, 129.11, 127.63 (2C), 120.15, 116.19, 114.02
(2C), 62.88, 55.29, 38.06, 33.39, 14.03; MS (GC/MS) m/z: 259(M+), 147, 115, 91;
HRMS (EI) calcd for C15H17NO3 (M) 259.1208, found 259.1208.
8. Ren, Y. L.; Xu, X. L.; Sun, K. P.; Xu, J. Tetrahedron: Asymmetry 2005, 16, 4010–
4014.
9. (a) Pfaltz, A. Acc. Chem. Res. 1993, 26, 339–345; (b) Salomon, R. G.; Sachinvala,
N. D.; Raychaudhuri, S. R.; Miller, D. B. J. Am. Chem. Soc. 1984, 106, 2211–2213.
10. (a) Jiang, B.; Fang, Y.; Zheng, J. Tetrahedron Lett. 2000, 41, 10281–10283; (b)
Suri, J. T.; Vu, T.; Hernandez, A.; Congdon, Julie; Singaram, B. Tetrahedron Lett.
2002, 43, 3649–3652; (c) Fu, X. Y.; McAllister, T. L.; Thiruvengadam, T. K.; Tann,
C. H.; Su, D. Tetrahedron Lett. 2003, 44, 801–804; (d) Kokura Tanska, S.; Ikeno,
T.; Yamada, T. Org. Lett. 2006, 8, 3025–3027.