A. Tsuhako et al. / Tetrahedron Letters 49 (2008) 6529–6532
6531
G. Org. Lett. 2002, 4, 1475; (d) Straub, B. F.; Bergman, R. G. Angew. Chem., Int. Ed.
2001, 40, 4632; Intermolecular reaction: (e) Ayinla, R. O.; Schafer, L. L. Inorg.
Chim. Acta 2006, 359, 3097; (f) Hoover, J. M.; Peterson, J. R.; Pikul, J. H.; Johnson,
A. R. Organometallics 2004, 23, 4614; (g) Johnson, J. S.; Bergman, R. G. J. Am.
Chem. Soc. 2001, 123, 2923; (h) Walsh, P. J.; Baranger, A. M.; Bergman, R. G. J.
Am. Chem. Soc. 1992, 114, 1708.
3. Lanthanides: (a) Tobisch, S. Chem. Eur. J. 2005, 12, 2520; (b) Hong, S.; Kawaoka,
A. M.; Marks, T. J. J. Am. Chem. Soc. 2003, 125, 15878; (c) Arredondo, V. M.; Tian,
S.; McDonald, F. E.; Marks, T. J. J. Am. Chem. Soc. 1999, 121, 3633; (d) Arredondo,
V. M.; Tian, S.; McDonald, F. E.; Marks, T. J. Organometallics 1999, 18, 1949; (e)
Arredondo, V. M.; Tian, S.; McDonald, F. E.; Marks, T. J. J. Am. Chem. Soc. 1998,
120, 4871.
4. (a) Pd: L. M. Lutete, I. Kadota, Y. Yamamoto 2004 126 1622.; (b) Ma, S.; Yu, F.;
Gao, W. J. Org. Chem. 2003, 68, 5943; (c) Dieter, R. K.; Yu, H. Org. Lett. 2001, 3,
3855; (d) Kang, S.-K.; Kim, K.-J. Org. Lett. 2001, 3, 511; (e) Karstens, W. F. J.;
Klomp, D.; Rutjes, F. P. J. T.; Hiemstra, H. Tetrahedron 2001, 57, 5123; (f) Ohno,
H.; Toda, A.; Miwa, Y.; Taga, T.; Osawa, E.; Yamaoka, Y.; Fujii, N.; Ibuka, T. J. Org.
Chem. 1999, 64, 2992; (g) Meguro, M.; Yamamoto, Y. Tetrahedron Lett. 1998, 39,
5421; (h) Ha, J. D.; Cha, J. K. J. Am. Chem. Soc. 1999, 121, 10012; Intermolecular
reaction: (i) Al-Masum, M.; Meguro, M.; Yamamoto, Y. Tetrahedron Lett. 1997,
38, 6071; (j) Karstens, W. F. J.; Rutjes, F. P. J. T.; Hiemstra, H. Tetrahedron Lett.
1997, 35, 6257; (k) Besson, L.; Goré, J.; Cazzes, B. Tetrahedron Lett. 1995, 36,
3867; (l) Davis, I. W.; Scopes, D. I. C.; Gallagher, T. Synlett 1993, 85; (m) Kimura,
M.; Fugami, K.; Tanaka, S.; Tamaru, Y. J. Org. Chem. 1992, 57, 6377; (n) Prasad, J.
S.; Liebeskind, L. S. Tetrahedron Lett. 1988, 29, 4257.
5. Ag: (a) Dieter, R. K.; Chen, N.; Gore, V. K. J. Org. Chem. 2006, 71, 8755; (b)
Amombo, M. O.; Hausherr, A.; Reissig, H.-U. Synlett 1999, 1871; (c) Davis, I. W.;
Gallagher, T.; Lamont, R. B.; Scopes, I. C. J. Chem. Soc., Chem. Commun. 1992, 335;
(d) Kinsman, R.; Lathbury, D.; Vernon, P.; Gallagher, T. J. Chem. Soc., Chem.
Commun. 1987, 243.
Figure 1. Possibility for the reaction mechanism.
6. Au: (a) LaLonde, R. L.; Sherry, B. D.; Kang, E. J.; Toste, F. D. J. Am. Chem. Soc. 2007,
129, 2452; (b) Zhang, Z.; Liu, G.; Kinder, R. E.; Han, Z.; Qian, H.; Widenhoefer, R.
A. J. Am. Chem. Soc. 2006, 128, 9066; (c) Morita, N.; Krause, N. Eur. J. Org. Chem.
2006, 4634; (d) Nishina, N.; Yamamoto, Y. Angew. Chem., Int. Ed. 2006, 45, 3314;
(e) Morita, N.; Krause, N. Org. Lett. 2004, 6, 4121.
N-substituent (entry 11). The reaction of d-allenylamines 1n with
Cu(OTf)2 catalyst proceeded slowly to provide 6-exo-cyclization
product piperidine 3n in 17% yield after 24 h, where 83% of 1n
was recovered. Meanwhile, b-allenylamine 1m reacted faster than
1n, but resulted in the formation of a complex mixture.
Based on the alkene geometry of the product, reaction mecha-
nisms for the exo-cyclization, via the metal-catalyzed intramolecu-
lar hydroamination of allenylamines, have been proposed in the
literatures involving an anti-aminometallation pathway through
a metal-coordinated allenic species a or b (Fig. 1, (i), in which a
is disfavour due to steric repulsion between R and NHR’ groups)
and an syn-aminometallation process through a metal amide inter-
mediate c (Fig. 1, (ii)).1–8 As revealed from the results of the trans-
formation of 1g, the present copper-catalyzed reaction gave 3g
with high selectivity for the E-olefin geometry and, therefore, an
anti-aminometallation pathway (i) may be postulated for the
mechanism.12
In summary, we have demonstrated that the intramolecular
hydroamination of allenylamines to 3-pyrolines or 2-alkenylpyrr-
olidines is effectively catalyzed by various copper salts. These
salts, which exhibited good catalytic reactivity, are inexpensive
and are relatively less-toxic, both of which are characteristics
that should be synthetically useful especially for application to
a large-scale process. More details concerning the stereospecific-
ity of the reaction and its application to asymmetric processes
are underway.
7. Hg Fox, D. N. A.; Lathbury, D.; Mahon, M. F.; Molly, K. C.; Gallagher, T. J. Chem.
Soc., Chem. Commun. 1989, 1073.
8. Pd-catalyzed bromoamination of allenes: (a) Jonasson, C.; Horváth, A.;
Väckvall, J.-E. J. Am. Chem. Soc. 2000, 122, 9600; Ru-catalyzed carboamination
of allens: (b) Trost, B. M.; Pinkerton, A. B.; Kremzow, D. J. Am. Chem. Soc. 2000,
122, 12007; Ta-catalyzed intermolecular hydroamination of allenes: (c)
Anderson, L. L.; Arnold, J.; Bergman, R. G. Org. Lett. 2004, 6, 2519.
9. Cu-catalyzed cyclization of iminoallenes to pyrroles has been reported, see: (a)
Nedolya, N. A.; Brandsma, L.; Tarasova, O. A.; Verkruijsse, H. D.; Trofimov, B. A.
Tetrahedron Lett. 1998, 39, 2409; (b) Brandsma, L.; Nedolya, N. A.; Brandsma, L.;
Tplmachev, S. V. Chem. Heterocycl. Compd. 2002, 38, 745; (c) Brandsma, L.;
Nedolya, N. A.; Tplmachev, S. V. Chem. Heterocycl. Compd. 2002, 38, 54; (d)
Kel’in, A. V.; Sromek, A. W.; Gevorgyan, V. J. Am. Chem. Soc. 2001, 123, 2074. Cu-
catalyzed intermolecular hydroaminaton of active alkenes has been reported,
see:; (e) Taylor, J. G.; Whittall, N.; Hii, K. K. Org. Lett. 2006, 8, 3561; (f) Munro-
Leighton, C.; Delp, S. A.; Blue, E. D.; Gunnoe, T. B. Organometallics 2007, 26,
1483. For Cu-catalyzed hydroamination of multiple bonds, see:; (g) Prior, A. M.;
Robinson, R. S. Tetrahedron Lett. 2008, 49, 411.
10. General procedure: To a solution of allenylamine 1 (0.50 mmol) in CH2Cl2
(1.0 mL) was added a copper salt (0.0025 mmol, 5.0 mol %), and then the
mixture was stirred at ambient temperature. After addition of aqueous
saturated Na2CO3 solution, the mixture was extracted with ether
(2 ꢀ 10 mL), dried over anhydrous MgSO4 and concentrated in vacuo. The
resultant residue was purified by silica gel column chromatography.
Spectroscopic data of 3a and 3n (1H, 13C NMR) were in good agreement with
those reported (Katrizky, A. R.; Yao, J.; Yang, B. J. Org. Chem. 1999, 64, 6066). 1H
NMR data of other products (500 or 600 MHz, CDCl3) d: 2b, 7.10–7.95 (m, 10H),
5.85 (d, J = 4.5 Hz, 1H), 5.72 (d, J = 4.5 Hz, 1H), 4.61 (br s, 1H), 3.97 (d,
J = 13.5 Hz, 1H), 3.75 (dd, J = 4.5, 14.0 Hz, 1H), 3.55 (d, J = 13.5 Hz, 1H), 3.31 (dd,
J = 5.5, 14.0 Hz, 1H); 2h 6.90–7.50 (m, 15H), (for anit, dl) 5.97 (br s, 1H), 4.98 (br
s, 1H), 3.73 (d, J = 14.5 Hz, 1H), 3.25 (d, J = 14.5 Hz, 1H), (for syn, meso) 5.68 (br
s, 1H), 4.85 (br s, 1H), 3.82 (s, 2H); 2i 7.10–7.50 (m, 10H), 1.10–1.70 (m, 10H),
0.88 (t, J = .2 Hz, 3H), (for major) 5.72 (br d, J = 6.0 Hz, 1H), 5.58 (br d, J = 5.4 Hz,
1H), 4.68 (dt, J = 4.8, 2.4 Hz, 1H), 3.92 (d, J = 13.8 Hz, 1H), 3.82 (m, 1H), 3.80 (d,
J = 13.8 Hz, 1H), (for minor), 5.97 (br d, J = 6.6 Hz, 1H), 5.81 (br s, J = 6.0 Hz, 1H),
4.79 (d, J = 5.4 Hz, 1H), 3.69 (m, 1H), 3.81 (d, J = 14.4 Hz, 1H), 3.49 (d,
J = 14.4 Hz, 1H); 2j, 6.90–7.40 (m, 10H), 5.73 (br s, 1H), 5.52 (br s, 1H), 4.80
(br s, 1H), 3.91 (t, J = 5.5 Hz, 1H), 3.61–3.83 (m, 3 H), 3.58 (dd, J = 6.8, 9.6 Hz,
1H), 3.15 (s, 3H); 2k, 7.10–7.45 (m, 15H), 6.31 (dd, J = 2.5, 4.0 Hz, 1H), 5.04 (br
s, 1H), 3.83 (d, J = 13.0 Hz, 1H), 3.82 (ddd, J = 1.5, 5.5, 14.0 Hz, 1H), 3.62 (d,
J = 13.0 Hz, 1H), 3.55 (ddd, J = 1.5, 4.0, 14.0 Hz, 1H); 2l, 7.41 (d, J = 8.0 Hz, 2H),
7.25 (d, J = 8.0 Hz, 2H), 5.80 (d, J = 3.5 Hz, 1H), 5.56 (d, J = 3.5 Hz, 1H), 4.66 (br s,
1H), 3.84 (dd, J = 5.5, 14.5 Hz, 1H), 3.57 (dt, J = 14.5, 3.0 Hz, 1H), 2.86 (hept,
J = 6.0 Hz, 1H), 0.99 (d, J = 6.5 Hz, 3H), 0.96 (d, J = 6.0 Hz, 3H); 3f, 7.04–7.42 (m,
10H), 5.86 (ddd, J = 6.9, 10.3, 17.2 Hz, 1H), 5.12 (d, J = 17.2 Hz, 1H), 4.97 (d,
J = 10.3 Hz, 1H), 3.76 (d, J = 10.9 Hz, 1H), 3.74 (m, 1H), 3.45 (d, J = 10.9 Hz, 1H),
2.75 (ddd, J = 1.7, 6.9, 12.6 Hz, 1H), 2.25 (dd, J = 9.2, 12.6 Hz, 1H); 3g, 7.18–7.34
(m, 5H), 5.61 (dt, J = 14.9, 6.9 Hz, 1H), 5.38 (dd, J = 8.0, 14.5 Hz, 1H), 4.04 (d,
J = 13.2 Hz, 1H), 3.02 (d, J = 13.2 Hz, 1H), 2.92 (t, J = 8.1 Hz, 1H), 2.72 (q,
J = 8.0 Hz, 1H), 2.02–2.10 (m, 3H), 1.93 (m, 1H), 1.57–1.80 (m, 3H), 1.36–1.47
(m, 2H), 0.91 (t, J = 7.5 Hz, 3H).
Acknowledgements
This study was partially supported by the Scientific Frontier
Research Project from the Ministry of Education, Culture, Sports,
Science and Technology, Japan.
References and notes
1. (a) Modern Allen e Chemistry: Volume 2 III Reaction of Allenes; Krause, N., Hashmi,
A. S. K., Eds.; Wiley-VHC: Weinheim, 2004; (b) Bytschkov, I.; Doye, S. Eur. J. Org.
Chem. 2003, 935; (c) Zimmer, R.; Dinesh, C. U.; Nandanan, E.; Khan, F. A. Chem.
Rev. 2000, 100, 3067; (d) Frederickson, M.; Grigg, R. Org. Prep. Proced. Int. 1997,
29, 63; (e) Tamaru, Y.; Kimura, M. Synlett 1997, 749; (f) Ojima, I.;
Tzamarioudaki, M.; Li, Z.; Donovan, R. J. Chem. Rev. 1996, 96, 635.
2. Ti, Zr: (a) Tobisch, S. Dalton Trans. 2006, 4277; (b) Ackermann, L.; Bergman, R.
G.; Loy, R. N. J. Am. Chem. Soc. 2003, 125, 11956; (c) Ackermann, L.; Bergman, R.