10.1002/anie.201806877
Angewandte Chemie International Edition
COMMUNICATION
2007, 46, 8116-8118; Angew. Chem. 2007, 119, 8262-8264; c) C. W.
Hamilton, R. T. Baker, A. Staubitz, I. Manners, Chem. Soc. Rev. 2009,
38, 279-293; d) A. Staubitz, A. P. M. Robertson, I. Manners, Chem. Rev.
2010, 110, 4079-4124; e) Z. Huang, T. Autrey, Energy Environ. Sci.
2012, 5, 9257-9268; f) A. Rossin, M. Peruzzini, Chem. Rev. 2016, 116,
8848-8872.
Based on the experimental and theoretical mechanistic
results, a plausible reaction cycle is outlined in Figure 4. CPA 1
quickly reacts with ammonia borane to release H2 and form
chiral ammonia borane 2. Double hydrogen transfers occur via a
concerted 6-membered ring transition state TS-(S) to produce
amine 4 and species 5 (several [N-B] species). A followed
hydrolysis of species 5 through a 4-membered ring transition
state TS1 regenerates CPA 1, which further reacts with
ammonia borane to reform the reactive chiral ammonia borane.
[2]
[3]
a) R. O. Hutchins, K. Learn, B. Nazer, D. Pytlewski, A. Pelter, Org. Prep.
Proced. Int. 1984, 16, 335-372; b) A. Staubitz, A. P. M. Robertson, M. E.
Sloan, I. Manners, Chem. Rev. 2010, 110, 4023-4078; c) O. Songis, C.
S. J. Cazin, Synlett 2013, 24, 1877-1881.
For selected examples, see: a) Y. Jiang, O. Blacque, T. Fox, C. M.
Frech, H. Berke, Organometallics 2009, 28, 5493-5504; b) G. Ménard,
D. W. Stephan, J. Am. Chem. Soc. 2010, 132, 1796-1797; c) C. C.
Chong, H. Hirao, R. Kinjo, Angew. Chem. Int. Ed. 2014, 53, 3342-3346;
Angew. Chem. 2014, 126, 3410-3414; d) S. Fu, N.-Y. Chen, X. Liu, Z.
Shao, S.-P. Luo, Q. Liu, J. Am. Chem. Soc. 2016, 138, 8588-8594; e) Q.
Zhou, L. Zhang, W. Meng, X. Feng, J. Yang, H. Du, Org. Lett. 2016, 18,
5189-5191.
O
O
O
P
NH3⋅BH3
OBH2⋅NH3
2
imine 3
H2
O
O
O
P
OH
1
O
O
HO-[B-N]
P
[4]
a) X. Yang, L. Zhao, T. Fox, Z.-X. Wang, H. Berke, Angew. Chem. Int.
Ed. 2010, 49, 2058-2062; Angew. Chem. 2010, 122, 2102-2106; b) X.
Yang, T. Fox, H. Berke, Chem. Commun. 2011, 47, 2053-2055; c) X.
Yang, T. Fox, H. Berke, Org. Biomol. Chem. 2012, 10, 852-860; d) X.
Yang, T. Fox, H. Berke, Tetrahedron 2011, 67, 7121-7127; For a review,
see: e) X. Yang, Z. Xie, J. He, L. Yu, Chin. J. Org. Chem. 2015, 35,
603-609.
H
B
R
O
O
H
H
Ar
H2N
N
Ar'
O
O
O
H
OH
[B-N]
P
O
TS-(S)
TS1
O
O
O
amine 4
P
H2O
[5]
[6]
B. L. Allwood, H. Shahriari-Zavareh, J. F. Stoddart, D. J. Williams, J.
Chem. Soc., Chem. Commun. 1984, 1461-1464.
O[B−N]
5
For leading reviews, see: a) D. W. Stephan, G. Erker, Angew. Chem.
Int. Ed. 2010, 49, 46-76; Angew. Chem. 2010, 122, 50-81; b) T. Soós,
Pure Appl. Chem. 2011, 83, 667-675; b) J. Paradies, Angew. Chem. Int.
Ed. 2014, 53, 3552-3557; Angew. Chem. 2014, 126, 3624-3629; c) L.
Shi, Y.-G. Zhou, ChemCatChem 2015, 7, 54-56; d) D. W. Stephan, G.
Erker, Angew. Chem. Int. Ed. 2015, 54, 6400-6441; Angew. Chem.
2015, 127, 6498-6541; e) D. W. Stephan, J. Am. Chem. Soc. 2015, 137,
10018-10032; f) D. W. Stephan, Acc. Chem. Res. 2015, 48, 306-316; g)
D. W. Stephan, Science 2016, 354, aaf7229; h) W. Meng, X. Feng, H.
Du, Acc. Chem. Res. 2018, 51, 191-201.
Figure 4. Plausible Reaction Cycle.
In summary, a novel and regenerable chiral ammonia
borane was developed via a H2 releasing reaction of ammonia
borane and chiral phosphoric acid, which was a highly effective
reductive reagent for asymmetric transfer hydrogenations. A
wide range of amines and β-amino esters were obtained in 55-
96% yields with 66-94% ee’s. Significantly, this chiral ammonia
borane can be efficiently and continuously regenerated during
the transfer hydrogenation with the assistance of water and
ammonia borane, which allowed as low as 0.1 mol % of chiral
phosphoric acid to give satisfactory reactivities and
enantioselectivities. Notably, herein, chiral phosphoric acid
played a role as a simple Brønsted acid to generate the reactive
chiral ammonia borane. Mechanistic studies suggest that the
hydrogen transfer between chiral ammonia borane and imine
occurs via a concerted 6-membered ring transition state. The
unique features of this chiral ammonia borane make it a
potentially useful chiral reagent for other asymmetric transfer
hydrogenations.
[7]
For selected reviews on asymmetric reduction of imines, see: a) J.-H.
Xie, S.-F. Zhu, Q.-L. Zhou, Chem. Rev. 2011, 111, 1713-1760; b) Q.-A.
Chen, Z.-S. Ye, Y. Duan, Y.-G. Zhou, Chem. Soc. Rev. 2013, 42, 497-
511; c) J. H. Schrittwieser, S. Velikogne, W. Kroutil, Adv. Catal. Synth.
2015, 357, 1655-1685; d) M. Wills, Top Curr. Chem. 2016, 374, 14-49;
e) B. Li, J.-B. Sortais, C. Darcel, RSC Adv. 2016, 6, 57603-57625; f) A.
M. F. Phillips, A. J. L. Pombeiro, Org. Biomol. Chem. 2017, 15, 2307-
2340; for recent examples on the metal-free asymmetric reduction of
imines, see: g) V. N. Wakchaure, P. S. J. Kaib, M. Leutzsch, B. List,
Angew. Chem. Int. Ed. 2015, 54, 11852-11856; Angew. Chem. 2015,
127,12019-12023; h) D. Enders, A. Rembiak, B. A. Stöckel, Adv. Synth.
Catal. 2013, 355, 1937-1942; i) M. R. Adams, C.-H. Tien, R. McDonald,
A. W. H. Speed, Angew. Chem. Int. Ed. 2017, 56, 16660-16663; Angew.
Chem. 2017, 129,16887-16890.
[8]
[9]
a) S. Li, G. Li, W. Meng, H. Du, J. Am. Chem. Soc. 2016, 138, 12956-
12962; b) S. Li, W. Meng, H. Du, Org. Lett. 2017, 19, 2604-2606.
For selected reviews, see: a) T. Akiyama, J. Itoh, K. Fuchibe, Adv.
Synth. Catal. 2006, 348, 999-1010; b) M. Terada, Chem. Commun.
2008, 4097-4112; c) M. Terada, Synthesis 2010, 1929-1982; d) J. Yu, F.
Shi, L.-Z. Gong, Acc. Chem. Res. 2011, 44, 1156-1171; e) M. Rueping,
J. Dufour, F. R. Schoepke, Green Chem. 2011, 13, 1084-1105; f) C.
Zheng, S.-L. You, Chem. Soc. Rev. 2012, 41, 2498-2518.
Acknowledgements
We are grateful for the generous financial support from the
National Natural Science Foundation of China (21572231,
21521002, and U1663227).
[10] CCDC-1813490 contains the supplementary crystallographic data for
4h. These data can be obtained free of charge from The Cambridge
[11] For leading reviews on asymmetric reduction of enamino esters, see: a)
T. C. Nugent, M. El-Shazly, Adv. Synth. Catal. 2010, 352, 753-819; b) A.
Weickgenannt, M. Oestreich, ChemCatChem 2011, 3, 1527-1529; c) J.-
H. Xie, S.-F. Zhu, Q.-L. Zhou, Chem. Soc. Rev. 2012, 41, 4126-4139.
Keywords: asymmetric transfer hydrogenation • ammonia
borane • chiral phosphoric acid • chiral ammonia borane • water
[1]
For leading reviews, see: a) F. H. Stephens, V. Pons, R. T. Baker,
Dalton Trans. 2007, 2613-2626; b) T. B. Marder, Angew. Chem. Int. Ed.
This article is protected by copyright. All rights reserved.