pubs.acs.org/joc
play a role in alleviating autoimmune diseases5-7 such as multi-
Synthesis of a Versatile Building Block for the
Preparation of 6-N-Derivatized r-Galactosyl
Ceramides: Rapid Access to Biologically Active
Glycolipids
ple sclerosis8 and arthritis.9 When both Th1 and Th2 cytokines
are released together, their effects oppose one another, which
may induce mixed and unpredictable biological effects.10 This is
the case upon R-GalCer/CD1d activation of the immune re-
sponse, which has complicated efforts to develop KRN7000 as a
therapeutic agent. The search for analogues of this glycolipid,
which induce a more biased Th1/Th2 response, is therefore a
current focus of many immunological studies.
Peter J. Jervis,† Liam R. Cox,*,‡ and Gurdyal S. Besra*,†
†School of Biosciences, University of Birmingham, Edgbaston,
Birmingham B15 2TT, United Kingdom, and ‡School of
Chemistry, University of Birmingham, Edgbaston,
Birmingham B15 2TT, United Kingdom
l.r.cox@bham.ac.uk; g.besra@bham.ac.uk
Received October 18, 2010
FIGURE 1. Prototypical KRN7000 (1) and biologically active
analogues 2, 3, 4, and 5.
A number of R-GalCer analogues have been reported that
exhibit more skewed Th1/Th2 cytokine profiles compared
with that elicited by R-GalCer 1 (Figure 1).11 Truncation of
the acyl12 (2) and sphingosine8,13 (OCH (3)) chains and the
incorporation of unsaturation in the acyl chain (R-GalCer
C20:2 (4))14 result in CD1d agonists that generate a more
Th2-biased response. Examples of more Th1-biasing mole-
cules are much rarer;15,16a the C-glycosyl analogue of
KRN7000, R-C-GalCer (5), is one such molecule that has
been shown to induce a useful Th1-biased response.15
There has been recent interest in galactosyl ceramides in
which the hydroxyl group at the 6-position of the sugar head-
group has been modified (Figure 2).16 Crystal structures of the
A concise route to the 6-azido-6-deoxy-R-galactosyl-phy-
tosphingosine derivative 9 is reported. Orthogonal pro-
tection of the two amino groups allows elaboration of 9
into a range of 6-N-derivatized R-galactosyl ceramides by
late-stage introduction of the acyl chain of the ceramide
and the 6-N-group in the sugar headgroup. Biologically
active glycolipids 6 and 8 have been synthesized to
illustrate the applicability of the approach.
(6) Godfrey, D. I.; MacDonald, H. R.; Kronenberg, M.; Smyth, M. J.;
Van Kaer, L. Nat. Rev. Immunol. 2004, 4, 231–237.
(7) Gonzalez-Aseguinolaza, G.; Van Kaer, L.; Bergmann, C. C.; Wilson,
J. M.; Schmieg, J.; Kronenberg, M.; Nakayama, T.; Taniguchi, M.;
Koezuka, Y.; Tsuji, M. J. Exp. Med. 2002, 195, 617–624.
(8) Miyamoto, K.; Miyake, S.; Yamamura, T. Nature 2001, 413, 531–534.
(9) Chiba, A.; Oki, S.; Miyamoto, K.; Hashimoto, H.; Yamamura, T.;
Miyake, S. Arthritis Rheum. 2004, 50, 305–313.
(10) (a) Oki, S.; Chiba, A.; Yamamura, T.; Miyake, S. J. Clin. Invest. 2004,
113, 1631–1640. (b) Yu, K. O. A.; Porcelli, S. A. Immunol. Lett. 2005, 100, 42–55.
(11) (a) Savage, P. B.; Teyton, L.; Bendelac, A. Chem. Soc. Rev. 2006, 35,
771–779. (b) Wu, D.; Fujioa, M.; Wong, C.-H. Bioorg. Med. Chem. 2008, 16,
1073–1083. and references cited therein.
(12) Goff, R. D.; Gao, Y.; Mattner, J.; Zhou, D.; Yin, N.; Cantu, C.;
Teyton, L., III; Bendelac, A; Savage, P. B. J. Am. Chem. Soc. 2004, 126,
13602–13603.
The synthetic glycolipid R-galactosyl ceramide (R-GalCer),1
also known as KRN7000 (1) (Figure 1), has been shown to
bind to the protein CD1d. Recognition of the resulting
glycolipid-protein complex by T cell receptors (TCRs)
located on the surface of invariant natural killer T (iNKT)
cells leads to activation of the immune response through the
release of a diverse range of cytokines, including both Th1
(IFNγ) and Th2 (IL-4) cytokines.2-4 The release of Th1
cytokines may contribute to antitumor and antimicrobial
functions, while the release of Th2 cytokines is believed to
(13) Oki, S.; Tomi, C.; Yamamura, T; Miyake, S. Int. Immunol. 2005, 17,
1619–1629.
(14) (a) Yu, K. O. A.; Im, J. S.; Molano, A.; Dutronc, Y.; Illarionov, P. A.;
Forestier, C.; Fujiwara, N.; Arias, I.; Miyake, S.; Yamamura, T.; Chang, Y. T.;
Besra, G. S.; Porcelli, S. A. Proc. Natl. Acad. Sci. U.S.A. 2005, 102, 3383–3388.
(b) Im, J. S.; Arora, P.; Bricard, G.; Molano, A.; Venkataswamy, M. M.; Baine, I.;
Jerud, E. S.; Goldberg, M. F.; Baena, A.; Yu, K. O. A.; Ndonye, R. M.; Howell,
A. R.; Yuan, W. M.; Cresswell, P.; Chang, Y. T.; Illarionov, P. A.; Besra, G. S.;
Porcelli, S. A. Immunity 2009, 30, 888–898.
(15) (a) Schmieg, J.; Yang, G.; Franck, R. W.; Tsuji, M. J. Exp. Med.
2003, 198, 1631–1641. (b) Yang, G.; Schmeig, J.; Tsuji, M.; Franck, R. W.
Angew. Chem., Int. Ed. 2004, 43, 3818–3822.
(16) (a) Trappeniers, M.; Van Beneden, K.; Decruy, T.; Hillaert, U.; Linclau,
B.; Elewaut, D.; Van Calenbergh, S. J. Am. Chem. Soc. 2008, 130, 16468–16469.
(b) Liu, Y.; Goff, R. D.; Zhou, D.; Mattner, J.; Sullivan, B. A.; Khurana, A.;
Cantu, C., III;Ravkov, E. V.;Ibegbu,C. C.;Altman, J. D.;Teyton, L.;Bendelac,
A.; Savage, P. B. J. Immunol. Methods 2006, 312, 34–39. (c) Xia, C.; Zhang, W.;
Zhang, Y.; Woodward, R. L.; Wang, J.; Wang, P. G. Tetrahedron 2009, 65, 6390–
6395. (d) Zhou, X. T.; Forestier, C.; Goff, R. D.; Li, C.; Teyton, L.; Bendelac, A.;
Savage, P. B. Org. Lett. 2002, 4, 1267–1270.
(1) Kawano, T.; Cui, J.; Koezuka, Y.; Toura, I.; Kaneko, Y.; Motoki, K.;
Ueno, H.; Nakagawa, R.; Sato, H.; Kondo, E.; Koseki, H.; Taniguchi, M.
Science 1997, 278, 1626–1629.
(2) Crowe, N.; Uldrich, A. P.; Kyparissoudis, K.; Hammond, K. J. L.;
Hayakawa, Y.; Sidobre, S.; Keating, R.; Kronenberg, M.; Smyth, M. J.;
Godfrey, D. I. J. Immunol. 2003, 171, 4020–4027.
(3) Burdin, N.; Brossay, L.; Kronenberg, M. Eur. J. Immunol. 1999, 29,
2014–2025.
(4) Carnaud, C.; Lee, D.; Donnars, O.; Park, S. H.; Beavis, A.; Koezuka,
Y.; Bendelac, A. J. Immunol. 1999, 163, 4647–4650.
(5) Taniguchi, M.; Harada, M.; Kojo, S.; Nakayama, T.; Wakao, H.
Annu. Rev. Immnunol. 2003, 21, 483–513.
320 J. Org. Chem. 2011, 76, 320–323
Published on Web 12/14/2010
DOI: 10.1021/jo102064p
r
2010 American Chemical Society