5682
L. Somsák et al. / Bioorg. Med. Chem. Lett. 18 (2008) 5680–5683
16. Somsák, L.; Czifrák, K.; Tóth, M.; Bokor, É.; Chrysina, E. D.; Alexacou, K. M.;
Hayes, J. M.; Tiraidis, C.; Lazoura, E.; Leonidas, D. D.; Zographos, S. E.;
Oikonomakos, N. G. Curr. Med. Chem., in press.
Reaction of nitrile oxides, obtained in situ by base treatment of
hydroximoyl chlorides,35 with the readily available 2,3,4,6-tetra-
O-acetyl-1-thio-b-D
-glucopyranose36 (11) afforded the correspond-
17. Watson, K. A.; Mitchell, E. P.; Johnson, L. N.; Cruciani, G.; Son, J. C.; Bichard, C. J.
F.; Fleet, G. W. J.; Oikonomakos, N. G.; Kontou, M.; Zographos, S. E. Acta Cryst.
1995, D51, 458.
ing thiohydroximates 12a–d37 in good yields. The spiro-cyclization
under photochemical conditions afforded the acetylated
glucopyranosylidene-spiro-oxathiazoles 13a–d38 and subsequent
deacetylation under basic transesterification conditions provided
the O-unprotected target molecules 14a–d.39 The spiro-cyclization
process was stereoselective with the oxygen atom adopting
predominantly the axial position as previously demonstrated and
the main product was isolated by column chromatography.
The GP inhibitor candidates were evaluated for their inhibition
against RMGPb enzyme as previously described40 and the obtained
inhibitor constants (Ki) are shown in Scheme 1. The phenyl deriv-
ative 14a proved ꢀ5 times weaker inhibitor than the correspond-
ing acyl urea 8. Substitution of the phenyl ring in the 4-position
by a fluorine (14b) brought about no change probably due to the
similar size of the H and F atoms. Introduction of a methoxy group
into the same position (14c) made a ꢀ3 times better inhibitor than
14a suggesting that a bulky substituent on the phenyl ring can be
beneficial. Finally, the 2-naphthyl derivative (14d) inhibited the
enzyme ꢀ2 times stronger than 10. These preliminary results dem-
onstrate that the combination of a rigid spiro-bicyclic structure
with the introduction of a large hydrophobic aromatic moiety in
a proper orientation for an optimal interaction with the enzyme
significantly improves the biological activity of the molecules.
The 2-naphthyl substituted derivative 14d is the most potent
glucose-based inhibitor of GP to date with an inhibition in the
nanomolar range. Based on these preliminary results, we are now
synthesizing a more populated family of glucopyranosylidene-
spiro-oxathiazoles for their biological evaluation as GP inhibitors.
These molecules are expected to bind at the catalytic site of GP
and further enzymatic and crystallographic investigations will be
reported elsewhere.
}
18. Somsák, L.; Kovács, L.; Tóth, M.; Osz, E.; Szilágyi, L.; Györgydeák, Z.; Dinya, Z.;
Docsa, T.; Tóth, B.; Gergely, P. J. Med. Chem. 2001, 44, 2843.
19. Györgydeák, Z.; Hadady, Z.; Felföldi, N.; Krakomperger, A.; Nagy, V.; Tóth, M.;
Brunyánszky, A.; Docsa, T.; Gergely, P.; Somsák, L. Bioorg. Med. Chem. 2004, 12,
4861.
20. Bichard, C. J. F.; Mitchell, E. P.; Wormald, M. R.; Watson, K. A.; Johnson, L. N.;
Zographos, S. E.; Koutra, D. D.; Oikonomakos, N. G.; Fleet, G. W. J. Tetrahedron
Lett. 1995, 36, 2145.
21. Anagnostou, E.; Kosmopoulou, M. N.; Chrysina, E. D.; Leonidas, D. D.; Hadjiloi,
T.; Tiraidis, C.; Zographos, S. E.; Györgydeák, Z.; Somsák, L.; Docsa, T.; Gergely,
P.; Kolisis, F. N.; Oikonomakos, N. G. Bioorg. Med. Chem. 2006, 14, 181.
22. Gregoriou, M.; Noble, M. E. M.; Watson, K. A.; Garman, E. F.; Krülle, T. M.;
Fuente, C.; Fleet, G. W. J.; Oikonomakos, N. G.; Johnson, L. N. Protein Sci. 1998, 7,
915.
}
23. Oikonomakos, N. G.; Skamnaki, V. T.; Osz, E.; Szilágyi, L.; Somsák, L.; Docsa, T.;
Tóth, B.; Gergely, P. Bioorg. Med. Chem. 2002, 10, 261.
24. Watson, K. A.; Chrysina, E. D.; Tsitsanou, K. E.; Zographos, S. E.; Archontis, G.;
Fleet, G. W. J.; Oikonomakos, N. G. Proteins: Struct. Funct. Bioinf. 2005, 61, 966.
25. Oikonomakos, N. G.; Kosmopoulou, M.; Zographos, S. E.; Leonidas, D. D.;
Somsák, L.; Nagy, V.; Praly, J.-P.; Docsa, T.; Tóth, B.; Gergely, P. Eur. J. Biochem.
2002, 269, 1684.
26. Somsák, L.; Felföldi, N.; Kónya, B.; Hüse, C.; Telepó, K.; Bokor, É.; Czifrák, K.
Carbohydr. Res. 2008, 343, 2083.
27. Nagy, V.; Felföldi, N.; Praly, J.-P.; Docsa, T.; Gergely, P.; Chrysina, E. D.; Tiraidis,
C.; Alexacou, K. M.; Leonidas, D. D.; Zographos, S. E.; Oikonomakos, N. G.;
Somsák, L., in preparation.
28. Chrysina, E. D.; Nagy, V.; Felföldi, N.; Telepó, K.; Praly, J.-P.; Docsa, T.; Gergely,
P.; Alexacou, K. M.; Hayes, J. M.; Leonidas, D. D.; Zographos, S. E.; Oikonomakos,
N. G.; Somsák, L., in preparation.
29. Hadady, Z.; Tóth, M.; Somsák, L. Arkivoc 2004, 140.
30. Chrysina, E. D.; Kosmopoulou, M. N.; Tiraidis, C.; Kardarakis, R.; Bischler, N.;
Leonidas, D. D.; Hadady, Z.; Somsák, L.; Docsa, T.; Gergely, P.; Oikonomakos, N.
G. Protein Sci. 2005, 14, 873.
31. Benltifa, M.; Vidal, S.; Gueyrard, D.; Goekjian, P. G.; Msaddek, M.; Praly, J.-P.
Tetrahedron Lett. 2006, 47, 6143.
32. Benltifa, M.; Vidal, S.; Fenet, B.; Msaddek, M.; Goekjian, P. G.; Praly, J.-P.;
Brunyánszki, A.; Docsa, T.; Gergely, P. Eur. J. Org. Chem. 2006, 4242.
33. Praly, J.-P.; Faure, R.; Joseph, B.; Kiss, L.; Rollin, P. Tetrahedron 1994, 50, 6559.
34. Elek, R.; Kiss, L.; Praly, J.-P.; Somsák, L. Carbohydr. Res. 2005, 340, 1397.
35. Liu, K. C.; Shelton, B. R.; Howe, R. K. J. Org. Chem. 1980, 45, 3916.
ˇ
ˇ
36. Cerny´, M.; Vrkoc, J.; Stanek, J. Coll. Czech. Chem. Commun. 1959, 24, 64.
Acknowledgments
37. Typical procedure I: 2,3,4,6-Tetra-O-acetyl-1-thio-b- -glucopyranose (11,
D
0.363 g, 1 mmol) dissolved in CH2Cl2 (5 mL) and Et3N (0.42 mL, 3 mmol)
were added under an Ar atmosphere with continuous stirring to a solution of a
hydroximoyl chloride (1.2 mmol) in Et2O or CH2Cl2 (5 mL). After immediate
precipitation of Et3NꢁHCl, the mixture was stirred further at rt. When TLC
indicated completion of the transformation (ꢀ1 h), 0.5 M H2SO4 (20 mL) was
added, and the organic phase was separated, washed by water (2ꢂ 20 mL), and
dried (MgSO4). After removal of the solvent under diminished pressure, the
residue was purified by crystallization or column chromatography to afford the
Financial support for this work was provided by the Hungarian
Scientific Research Fund (OTKA 46081, 61336). Collaboration be-
tween Lyon and Debrecen was facilitated by PICS Program NO.
4576 financed by CNRS (France) and the Hungarian Academy of
Sciences (Hungary). V.N. thanks the French Embassy in Budapest
for initiating and supporting a co-tutored PhD Thesis in Debrecen
and Lyon. For the preliminary enzyme kinetic measurements the
authors are indebted to T. Docsa and P. Gergely (University of Deb-
recen, Hungary).
desired acetylated hydroximothioates 12a–d. Characterization for 12d: Rf
25
= 0.25 (PE/EtOAc, 2:1); [
a
]
D
+4.5 (c 0.29, MeOH); mp = 154–156 °C; 1H NMR
(360 MHz, CDCl3) d 1.90, 1.95, 2.05, 2.07 (4s, 12H, 4ꢂ CH3), 2.96 (ddd, 1H, H-5),
3.92 (dd, 1H, J5,6’ = 2.6 Hz, H-6’), 4.05 (dd, 1H, J5,6 = 3.9 Hz, J6,6’ = 11.9 Hz, H-6),
4.55 (d, 1H, J1,2 = 9.2 Hz, H-1), 5.09, 5.04, 4.97 (3t, 3H, J = 9.2 Hz, H-2, H-3, H-4),
7.50–8.10 (m, 7H, H-ar), 10.07 (s, 1H, OH); 13C NMR (90 MHz, CDCl3) d 20.6,
20.5, 20.4, 20.3 (CH3), 61.4 (C-6), 75.4, 73.6, 69.8, 67.6 (C-2, C-3, C-4, C-5), 88.3
(C-1), 125.6, 126.8, 127.3, 127.7, 127.9, 128.3, 129.8, 132.6, 133.5 (aromatics),
151.9 (C@N), 170.6, 170.2, 169.2 (C@O); Anal. Calcd for C25H27NO10S (533.56):
C, 56.28; H, 5.10; N, 2.63; S, 6.01. Found: C, 56.41; H, 5.06; N, 2.44; S, 5.88.
38. Typical procedure II: A solution of hydroximothioate 12a–d (1 mmol) and N-
bromosuccinimide (2 mmol) in CCl4 (20 mL) was boiled and illuminated by a
60 W heat lamp for 45 min. The reaction was diluted with EtOAc (150 mL) and
the organic layer was washed with 5% aqueous Na2SO3 (2ꢂ 100 mL) and water
(2ꢂ 100 mL), dried (Na2SO4), filtered and evaporated under reduced pressure.
The residue was purified by flash column chromatography (PE then PE/EtOAc
References and notes
1. Johnson, L. N. FASEB J. 1992, 6, 2274.
2. Hengesh, E. J. In Principles of Medicinal Chemistry; Foye, W. O., Lemke, T. L.,
Williams, D. A., Eds.; Springer: Baltimore, 1995; pp 581–600.
3. Moller, D. E. Nature 2001, 414, 821.
4. Zimmet, P.; Alberti, K. G. M. M.; Shaw, J. Nature 2001, 414, 782.
5. Staehr, P.; Hother-Nielsen, O.; Beck-Nielsen, H. Diabetes Obes. Metab. 2002, 4,
215.
6. Roden, M.; Bernroider, E. Best Pract. Res. Clin. Endocrin. Metab. 2003, 17, 365.
7. Kurukulasuriya, R.; Link, J. T.; Madar, D. J.; Pei, Z.; Rohde, J. J.; Richards, S. J.;
Souers, A. J.; Szczepankiewicz, B. G. Curr. Med. Chem. 2003, 10, 99.
8. Ross, S. A.; Gulve, E. A.; Wang, M. H. Chem. Rev. 2004, 104, 1255.
9. Oikonomakos, N. G. Curr. Protein Pept. Sci. 2002, 3, 561.
10. Baker, D. J.; Greenhaff, P. L.; Timmons, J. A. Expert Opin. Ther. Patents 2006, 16,
459.
11. Agius, L. Best Pract. Res. Clin. Endocrin. Metab. 2007, 21, 587.
12. Henke, B. R.; Sparks, S. M. Mini-Rev. Med. Chem. 2006, 6, 845.
13. Oikonomakos, N. G.; Somsák, L. Curr. Opin. Invest. Drugs 2008, 9, 379.
14. Somsák, L.; Nagy, V.; Hadady, Z.; Docsa, T.; Gergely, P. Curr. Pharm. Des. 2003, 9,
1177.
65:35) to afford the desired acetylated spiro-oxathiazoles 13a–d.
20
Characterization for 13d: Rf = 0.59 (PE/EtOAc, 3:2); [
a
]
D
+44 (c 1, CH2Cl2);
1H NMR (300 MHz, CDCl3) d 2.04, 2.06, 2.09 (3s, 12H, 4ꢂ CH3), 4.09 (dd, 1H,
J6,5 = 2.1 Hz, J6,6’ = 12.7 Hz, H-6), 4.35 (dd, 1H, J6’,5 = 3.7 Hz, J6’,6 = 12.7 Hz, H-6’),
4.45 (ddd, 1H, J5,6 = 2.1 Hz, J5,6’ = 3.7 Hz, J5,4 = 10.3 Hz, H-5), 5.28 (m, 1H, H-4),
5.66 (m, 2H, H-2 H-3), 7.51–7.62 (m, 2H, H-ar), 7.84–7.90 (m, 4H, H-ar), 8.01 (s,
1H, H-ar); 13C NMR (75 MHz, CDCl3) d 20.4, 20.6 (CH3), 61.1 (C-6), 67.5 (C-4),
68.0 (C-2 or C-3), 70.7 (C-5), 71.1 (C-2 or C-3), 122.4 (C-1), 123.5, 124.4, 127.1,
127.8, 128.0, 128.6, 128.8, 129.4, 132.7, 134.6 (aromatics), 156.5 (C@N), 169.4,
169.5, 169.7, 170.5 (C@O); MS (ESI) m/z = 531.7 [M+H]+, 554.0 [M+Na]+, 1062.6
[2M+H]+, 1084.7 [2M+Na]+; HRMS (ESI) m/z = C25H25NNaO10S [M+Na]+ Calcd
554.1097. Found 554.1097.
15. Somsák, L.; Nagy, V.; Hadady, Z.; Felföldi, N.; Docsa, T.; Gergely, P. In Frontiers in
Medicinal Chemistry; Reitz, A. B.; Kordik, C. P.; Choudhary, M. I.; Rahman, A. u.,
Eds.; Bentham, 2005; pp. 253–272.
39. Typical procedure III:
A solution of acetylated spiro-oxathiazoles 13a–d
(150 mg) and NaOMe (5 mg) in MeOH (15 mL) was stirred at rt for 3 h. The