Organic Letters
Letter
derivative 7d with 73% yield. This late-stage installation of a
fused pyridine functional group is a striking application of this
method.
Postsynthetic functional group transformation is an interest-
ing area of structural modification; therefore, newly synthe-
sized fused pyridines were subjected to various transformations
(Scheme 4). For example, Dess−Martin periodinane oxidation
bridge Crystallographic Data Centre, 12 Union Road,
Cambridge CB2 1EZ, UK; fax: +44 1223 336033.
AUTHOR INFORMATION
■
Corresponding Author
ORCID
a
Scheme 4. Derivatization of Functionalized Quinolines
Author Contributions
⊥W.C. and S.W. contributed equally to this work.
Notes
a
The authors declare no competing financial interest.
See the details of the reaction conditions in the Supporting
ACKNOWLEDGMENTS
■
We are grateful for financial support by the National Natural
Science Foundation of China (21472085, 21332005, and
21672100).
of 2b provided 3-benzoylquinoline 8a. Acid-induced deacety-
lation of 2b resulted in the quinoline 8b in 94% yield. The
palladium-catalyzed cyclization of 2p was achieved by
activation of the heteroaryl C−H bond, efficiently providing
the acetoxyl-functionalized tetracyclic compound 8c, a
structural unit with a fused quinoline and indene framework
found in a number of pharmaceuticals and bioactive natural
products.19 The nickel-catalyzed Suzuki coupling reaction of
2b with phenylboronic acid furnished the triaryl methane 8d.
The reduction of 2b provided 3-benzylquinoline 3b.
In summary, we have presented a versatile and highly
chemo- and regioselective silver-promoted cascade reaction of
N-heteroaryl-3alkylideneazetidines and carboxylic acids, pro-
viding a general method for the synthesis of acetyloxy-
functionalized fused pyridines. Mechanistic study reveals the
reaction proceeds through intramolecular ring expansion with
the π bond of phenyl ring and subsequent intermolecular
oxidative nucleophilic addition of acetate and oxidative
aromatization under the influence of silver acetate. This
protocol allows useful modification of ligands, drugs, and
natural product analogues with fused pyridine ring systems.
Such compounds are otherwise difficult to produce, and this
shows the general applicability of the present protocol to
generate diverse structural features. We believe this work will
open a new outlook and scientific interest for understanding
and exploiting the strained N-heterocycles through ring-
expansion and nucleophilic substitution cascade strategies.
Investigations toward detailed mechanism and further
synthetic applications of this newly established methodology
are currently underway in our laboratory.
REFERENCES
■
(1) For selected reviews on aziridines, see: (a) Tanner, D. Angew.
Chem., Int. Ed. Engl. 1994, 33, 599. (b) Sweeney, J. B. Chem. Soc. Rev.
2002, 31, 247. (c) Singh, G. S.; D’hooghe, M.; De Kimpe, N. Chem.
Rev. 2007, 107, 2080. (d) McMills, M. C.; Bergmeier, S. C. In
Comprehensive Heterocyclic Chemistry III; Padwa, A., Ed.; Pergamon:
Oxford, 2008; Vol. 2, p 105. (e) Padwa, A. In Comprehensive
Heterocyclic Chemistry III; Padwa, A., Ed.; Pergamon: Oxford, 2008;
́
Vol. 1, p 1. (f) Botuha, C.; Chemla, F.; Ferreira, F.; Perez-Luna, A. In
Heterocycles in Natural Product Synthesis; Majumdar, K. C.;
Chattopadhyay, S. K., Eds.; Wiley- VCH: Weinheim, 2011; p 3.
(g) Lu, B. L.; Dai, L. Z.; Shi, M. Chem. Soc. Rev. 2012, 41, 3318.
(h) Huang, C. Y.; Doyle, A. G. Chem. Rev. 2014, 114, 8153.
(i) Ouyang, K. B.; Hao, W.; Zhang, W. X.; Xi, Z. F. Chem. Rev. 2015,
115, 12045. (j) Singh, G. S.; Sudheesh, S.; Keroletswe, N. ARKIVOC
2018, 2018, 50.
(2) For selected reviews on azetidines: (a) Couty, F.; Evano, G.
Synlett 2009, 2009, 3053. (b) Bott, T. M.; West, F. G. Heterocycles
2012, 84, 223. (c) Mehra, V.; Lumb, I.; Anand, A.; Kumar, V. RSC
Adv. 2017, 7, 45763.
(3) Stankovic, S.; D’hooghe, M.; Catak, S.; Eum, H.; Waroquier, M.;
Van Speybroeck, V.; De Kimpe, N.; Ha, H. J. Chem. Soc. Rev. 2012,
41, 643.
(4) Jung, J. W.; Kim, S. H.; Suh, Y. G. Asian J. Org. Chem. 2017, 6,
1117.
(5) Formal cycloaddition of aziridines with two alkynes: Zhou, M.
B.; Song, R. J.; Li, J. H. Angew. Chem., Int. Ed. 2014, 53, 4196.
(6) Liu, C.; Zhang, H.; Shi, W.; Lei, A. W. Chem. Rev. 2011, 111,
1780.
(7) Selected reviews of cascade reactions in synthesis: (a) Nicolaou,
K. C.; Edmonds, D. J.; Bulger, P. G. Angew. Chem., Int. Ed. 2006, 45,
́
̃
7134. (b) Barluenga, J.; Rodríguez, F.; Fananas, F. J. Chem. - Asian J.
2009, 4, 1036. (c) Lu, L. Q.; Chen, J. R.; Xiao, W. J. Acc. Chem. Res.
2012, 45, 1278.
(8) Selected recent applications of 2-vinylaziridines: (a) Xu, C. F.;
Zheng, B. H.; Suo, J. J.; Ding, C. H.; Hou, X. L. Angew. Chem., Int. Ed.
2015, 54, 1604. (b) Feng, J. J.; Lin, T. Y.; Zhu, C. Z.; Wang, H. M.;
Wu, H. H.; Zhang, J. L. J. Am. Chem. Soc. 2016, 138, 2178.
(c) Hashimoto, T.; Takino, K.; Hato, K.; Maruoka, K. Angew. Chem.,
Int. Ed. 2016, 55, 8081. (d) Zhu, C. Z.; Feng, J. J.; Zhang, J. L. Angew.
Chem., Int. Ed. 2017, 56, 1351. (e) Wang, L.; Zou, H. Y.; Zhang, X.
W.; Huang, G. P. Org. Chem. Front. 2017, 4, 587. For selected
ASSOCIATED CONTENT
* Supporting Information
TThe Supporting Information is available free of charge on the
■
S
Experimental details and characterization datas for all
Accession Codes
CCDC 1823285 contains the supplementary crystallographic
data for this paper. These data can be obtained free of charge
D
Org. Lett. XXXX, XXX, XXX−XXX