Journal of the American Chemical Society
Page 12 of 13
gents: (a) Liu, X.; Hsiao, C.ꢀC.; Kalvet, I.; Leiendecker, M.; Guo, L.;
(24) (a) Shi, S.; Meng, G.; Szostak, M. Angew. Chem. Int. Ed. 2016,
Schoenebeck, F.; Rueping, M. Angew. Chem., Int. Ed. 2016, 55,
6093ꢀ6098. with alkylmagnesium reagents: (b) Tobisu, M.; Takahira,
T.; Morioka, T.; Chatani, N. J. Am. Chem. Soc. 2016, 138, 6711ꢀ
6714; with alkylborane reagents: (c) Guo, L.; Hsiao, C.ꢀC.; Yue, H.;
Liu, X.; Rueping, M. ACS Catal. 2016, 6, 4438ꢀ4442. (d) Guo, L.;
Liu, X.; Baumann, C.; Rueping, M. Angew. Chem. Int. Ed. 2016, 55,
15415ꢀ15419; with alkylzinc reagents: (e) Simmons, B. J.; Weires, N.
A.; Dander, J. E.; Garg, N. K. ACS Catal. 2016, 6, 3176ꢀ3179.
(13) Jorgenson, M. J. Org. React. 1970, 18, 1ꢀ97.
(14) (a) Blangetti, M.; Rosso, H.; Prandi, C.; Deagostino, A.; Venꢀ
turello, P. Molecules 2013, 18, 1188ꢀ1213. (b) Meng, G.; Szostak, M.
Org. Biomol. Chem. 2016, 14, 5690ꢀ5707. (c) Mondal, M.; Begum,
T.; Bora, U. Org. Chem. Front. 2017, 4, 1430ꢀ1434.
55, 6959ꢀ6963. (b) Hu, J.; Zhao, Y.; Liu. J.; Zhang, Y.; Shi. Z. An-
gew. Chem. Int. Ed. 2016, 55, 8718ꢀ8722. For further Niꢀcatalyzed
decarbonylative transformations of amides, see: (c) Dey, A.; Sasmal,
S.; Seth, K.; Lahiri, G. K.; Maiti, D. ACS Catal. 2017, 7, 433ꢀ437. (d)
Srimontree, W.; Chatupheeraphat, A.; Liao, H.ꢀH.; Rueping, M. Org.
Lett. 2017, 19, 3091ꢀ3094. (e) Liu, X.; Yue, H.; Jia, J.; Guo, L.;
Rueping, M. Chem. Eur. J. 2017, 23, 11771ꢀ11775. (f) Liu, C.; Szosꢀ
tak, M. Angew. Chem. Int. Ed. 2017, 56, 12718ꢀ12722. (g) Hu, J.;
Wang, M.; Pu, X.; Shi, Z. Nat. Commun. 2017, 8, 14993. (h) Lee, S.ꢀ
C.; Guo, L.; Yue, H.; Liao, H.ꢀH.; Rueping, M. Synlett 2017, 28,
2594ꢀ2598.
1
2
3
4
5
6
7
8
9
(25) See the Supporting Information for details.
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(26) De Corte, B. L.; Kinney, W. A.; Liu, Li.; Ghosh, S.; Brunner, L.;
Hoekstra, W. J.; Santulli, R. J.; Tuman, R. W.; Baker, J.; Burns, C.;
Proost, J. C.; Tounge, B. A.; Damiano, B. P.; Maryanoff, B. E.; Johnꢀ
sona, D. L.; Galemmo R. A. Jr. Bioorg. Med. Chem. Lett. 2004, 14,
5227ꢀ5232.
(27) Orjales, A.; Mosquera, R.; Toledo, A.; Pumar, M. C.; García N.;
Cortizo L.; Labeaga, L.; Innerárity A. J. Med. Chem. 2003, 46, 5512ꢀ
5532.
(28) To rule out the intermediary ketone formation in the decarbonylꢀ
ative alkylation process, ketone 7a was subjected to the reaction
conditions of Table 2. However, no ketone decarbonylation was
observed. In addition, a control experiment was carried out to underꢀ
stand the correlation between ligand and temperature. When we used
the Ni/PnBu3 complex at high temperature (150 °C), the decarbonylaꢀ
tive product was obtained in 12% yield. On the other hand, when we
used the Ni/dcype complex at lower temperature (80 °C), no ketone
(15) (a) Haddach, M.; McCarthy, J. R. Tetrahedron Lett. 1999, 40,
3109ꢀ3112. (b) Rafiee F.; Hajipour, A. R. Appl. Organomet. Chem.
2015, 29,181ꢀ184.(c)Semler, M.; Štěpnička, P. Catal. Today 2015, 243,
128ꢀ133. (d) Forbes, A. M.; Meier, G. P.; JonesꢀMensah, E.; Magoꢀ
lan, J. Eur. J. Org. Chem. 2016, 2983ꢀ2987.
(16) Chen, Q.; Fan, X.ꢀH.; Zhang, L.ꢀP.; Yang, L.ꢀM. RSC Adv. 2014,
4, 53885ꢀ53890.
(17) (a) Liebeskind, L. S.; Srogi, J. J. Am. Chem. Soc. 2000, 122,
11260ꢀ11261. (b) Yu, Y.; Liebeskind, L. J. Org. Chem., 2004, 69,
3554ꢀ3557. (c) Savarin, C.; Srogi, J.; Liebeskind, L. S. Org. Lett.,
2000, 2, 3229ꢀ3231. (d) Zeysing, B.; Gosch, C.; Terfort, A. Org. Lett.,
2000, 2, 1843ꢀ1845. (e) Prokopcová, H.; Kappe, C. O. Angew. Chem.,
Int. Ed. 2009, 48, 2276ꢀ2286.
(18) (a) Li, X.; Zou, G. J. Organomet. Chem. 2015, 794, 136ꢀ145. (b)
Meng, G.; Szostak, M. Org. Lett. 2015, 17, 4364ꢀ4367. (c) Li, X.;
Zou, Z. Chem. Commun. 2015, 51, 5089ꢀ5092. (d) Weires, N. A.;
Baker, E. L.; Garg, N. K. Nat. Chem. 2016, 8, 75ꢀ79. (e) Meng, G.;
Shi, S.; Szostak, M. ACS Catal. 2016, 6, 7335ꢀ7339. (f) Shi, S.; Szosꢀ
tak, M. Org. Lett. 2016, 18, 5872ꢀ5875. (g) Liu, C.; Meng, G.; Liu,
Y.; Liu, R.; Lalancette, R.; Szostak, R.; Szostak, M. Org. Lett. 2016,
18, 4194ꢀ4197. (h) Lei, P.; Meng, G.; Szostak, M. ACS Catal. 2017,
7, 1960ꢀ1965. (i) Liu, C.; Liu, Y.; Liu, R.; Lalancette, R.; Szostak, R.;
Szostak, M. Org. Lett. 2017, 19, 1434ꢀ1437. (j) Ni, S.; Zhang, W.;
Mei, H.; Han, J.; Pan, Y. Org. Lett. 2017, 19, 2536ꢀ2539. (k) Amani,
J.; Alam, R.; Badir, S.; Molander, G. A. Org. Lett. 2017, 19, 2426ꢀ
2429. (l) Shi, S.; Szostak, M. Synthesis 2017, 49, 3602ꢀ3608. (m) Lei,
P.; Meng, G.; Ling, Y.; An, J.; Szostak, M. J. Org. Chem. 2017, 82,
6638ꢀ6646. (n) Meng, G.; Szostak, R.; Szostak, M. Org. Lett. 2017,
19, 3596ꢀ3599. (o) Meng, G.; Lalancette, R.; Szostak, R.; Szostak, M.
Org. Lett. 2017, 19, 4656ꢀ4659.
product was observed.
Cross-experiment
Ni(cod)2 (10 mol %)
PnBu3 (40 mol %)
PMP
PMP
O
Cs2CO3 (2 equiv)
12%
toluene, 150 o
C
OPh
B
+
Ni(cod)2 (10 mol %)
dcype (20 mol %)
starting material
92% recovery
CsF (2 equiv)
toluene, 80 o
C
(29) Free energies in toluene were estimated using the M06 functional
as implemented in Gaussian09, with the all electron def2ꢀtzvpp basis
set. Electrostatic and nonꢀelectrostatic solvent effects were estimated
with the SMD solvation model.
(30) For related theoretical studies, see: (a) Yoshikai, N.; Matsuda,
H.; Nakamura, E. J. Am. Chem. Soc. 2008, 130, 15258ꢀ15259. (b) Li,
Z.; Zhang, S. L.; Fu, Y.; Guo, Q. X.; Liu, L. J. Am. Chem. Soc. 2009,
131, 8815ꢀ8823. (c) Hong, X.; Liang, Y.; Houk, K. N. J. Am. Chem.
Soc. 2014, 136, 2017ꢀ2025. (d) Lu, Q.; Yu, H.; Fu, Y. J. Am. Chem.
Soc. 2014, 136, 8252ꢀ8260. (e) Xu, H.; Muto, K.; Yamaguchi, J.;
Zhao, C.; Itami, K.; Musaev, D. G. J. Am. Chem. Soc. 2014, 136,
14834ꢀ14844. For reviews on mechanistic studies on Niꢀcatalyzed
crossꢀcoupling reactions, see: (f) Li, Z.; Liu, L. Chin. J. Catal. 2015,
36, 3ꢀ14. (g) Sperger, T.; Sanhueza, I. A.; Kalvet, I.; Schoenebeck, F.
Chem. Rev. 2015, 115, 9532ꢀ9586.
(31) (a) Joost, M.; Zeineddine, A.; Estévez, L.; Mallet−Ladeira, S.;
Miqueu, K.; Amgoune, A.; Bourissou, D. J. Am. Chem. Soc. 2014,
136, 14654–14657. (b) Fernández, I.; Wolters, L. P.; Bickelhaupt, F.
M. J. Comput. Chem. 2014, 35, 2140ꢀ2145.
(32) Falivene, L.; Credendino, R.; Poater, A.; Petta, A.; Serra, L.;
Oliva, R.; Scarano, V.; Cavallo, L. Organometallics 2016, 35, 2286ꢀ
2293.
(19) Yamamoto, T.; Ishizu, J.; Kohara, T.; Komiya, S.; Yamamoto, A.
J. Am. Chem. Soc. 1980, 102, 3758ꢀ3764.
(20) a) Tatamidani, H.; Yokota, K.; Kakiuchi, F,; Chatani, N. J. Org.
Chem. 2004, 69 , 5615ꢀ5621. (b) Tatamidani, H.; Kakiuchi, F.;
Chatani, N. Org. Lett. 2004, 6, 3597ꢀ3599. For more recent Pdꢀ
catalyzed protocols, see: (c) Halima, T. B.; Zhang, W.; Yalaoui, I.;
Hong, X.; Yang, Y.ꢀF.; Houk, K. N.; Newman, S. G. J. Am. Chem.
Soc. 2017, 139, 1311ꢀ1318. (d) Lei, P.; Meng, G.; Shi, S.; Ling, Y.;
An, J.; Szostak, R.; Szostak, M. Chem. Sci. 2017, 8, 6525ꢀ6530. (e)
Isshiki, R.; Takise, R.; Itami, K.; Muto, K.; Yamaguchi, J. Synlett
2017, 28, 2599ꢀ2603.
(21) A mixture of decarbonylative and ketone product was obtained in
previous studies without full control of the alkylated or ketone prodꢀ
ucts, see: Gooßen, L. J.; Paetzold. Adv. Synth. Catal. 2004, 346, 1665ꢀ
1668. See also ref 9i.
(22) Bond enthalpy data were taken from (accessed on 27/09/2016),
bond_energies_lengths.html.
(23) Nilsson, P.; Olofsson, K.; Larhed, M. MicrowaveꢀAssisted and
MetalꢀCatalyzed Coupling Reactions in Topics in Current Chemistry.
Microwave Methods in Organic Synthesis; Larhed, M.; Olofsson, K.
Eds.; Springer: Heidelberg, 2006; Vol. 266, pp 103ꢀ144.
(33) Hansch, C.; Leo, A.; Taft, R. W. Chem. Rev. 1991, 91, 165ꢀ195.
ACS Paragon Plus Environment