Communications
Voronkov, J. Organomet. Chem. Libr. 1977, 5, 1 – 179; c) I. Ojima
in The Chemistry of Organic Silicon Compounds (Eds.: S. Patai,
Z. Rappoport), Wiley, Chichester, 1989, pp. 1479 – 1526;
d) Comprehensive Handbook on Hydrosilylation (Ed.: B. Mar-
ciniec), Pergamon, Oxford, 1992; e) T. Hiyama, T. Kusumoto in
Comprehensive Organic Chemistry, Vol. 8 (Eds.: B. M. Trost, I.
Fleming), Pergamon, Oxford, 1991, chap. 3.12; f) K. A. Horn,
Chem. Rev. 1995, 95, 1317 – 1350.
In summary, we have developed a novel method for the
synthesis of 1,2-di- and 1,1,2-trisilylethenes in a regio- and
stereoselective manner. The products are not only useful as
precursors for various alkenes but are also structurally
interesting. Further improvement of this strategy will allow
access to a wide range of ethenes that are multifariously
substituted with Group 14 metals.
[4] a) M. Suginome, Y. Ito, Chem. Rev. 2000, 100, 3221 – 3256; b) J.
Hibino, S. Nakatsukasa, K. Fugami, S. Matsubara, K. Oshima, H.
Nozaki, J. Am. Chem. Soc. 1985, 107, 6416 – 6417; c) H.
Watanabe, M. Kobayashi, M. Saito, Y. Nagai, J. Organomet.
Chem. 1981, 216, 149 – 157.
[5] For the disproportionation of vinylsilane, see: a) B. Marciniec, E.
Walczuk-Gusciora, P. Blazejewska-Chadyniak, J. Mol. Catal. A
2000, 160, 165 – 171; b) B. Marciniec, J. Guliꢁski, J. Organomet.
Chem. 1984, 266, C19-C21; for Ru-catalyzed dehydrogenative
silylation of vinylsilanes, see: c) Y. Seki, K. Takeshita, K.
Kawamoto, J. Organomet. Chem. 1989, 369, 117 – 123.
[6] a) K. Wakabayashi, H. Yorimitsu, K. Oshima, J. Am. Chem. Soc.
2001, 123, 5374 – 5375; b) Y. Ikeda, T. Nakamura, H. Yorimitsu,
K. Oshima, J. Am. Chem. Soc. 2002, 124, 6514 – 6515; c) T. Tsuji,
H. Yorimitsu, K. Oshima, Angew. Chem. 2002, 114, 4311 – 4313;
Angew. Chem. Int. Ed. 2002, 41, 4137 – 4139; ; d) T. Fujioka, T.
Nakamura, H. Yorimitsu, K. Oshima, Org. Lett. 2002, 4, 2257 –
2259; e) K. Mizutani, H. Shinokubo, K. Oshima, Org. Lett. 2003,
5, 3959 – 3961; f) K. Mizutani, H. Yorimitsu, K. Oshima, Chem.
Lett. 2004, 33, 832 – 833; g) T. Nishikawa, H. Yorimitsu, K.
Oshima, Synlett 2004, 1573 – 1574; h) H. Ohmiya, H. Yorimitsu,
K. Oshima, Chem. Lett. 2004, 33, 1240 – 1241; i) H. Ohmiya, T.
Tsuji, H. Yorimitsu, K. Oshima, Chem. Eur. J. 2004, 10, 5640 –
5648; j) Y. Ikeda, H. Yorimitsu, H. Shinokubo, K. Oshima, Adv.
Synth. Catal. 2004, 346, 1631 – 1634; k) H. Shinokubo, K.
Oshima, Eur. J. Org. Chem. 2004, 2081 – 2091.
Experimental Section
General procedure (1a): Anhydrous cobalt(ii) chloride (6.5 mg,
0.05 mmol) was placed in a 20-mL reaction flask and heated with a
hair dryer in vacuo for 2 min. After the cobalt salt turned blue,
anhydrous THF (3.0 mL) was added under argon. The mixture was
stirred for 3 min at room temperature. Dibromo(dimethyl(phenyl)-
silyl)methane (154 mg, 0.50 mmol) and a solution of trimethylsilyl-
methylmagnesium chloride in diethyl ether (1.0m; 1.5 mL, 1.5 mmol)
were successively added dropwise to the reaction mixture at 08C.
While the Grignard reagent was being added, the mixture turned
brown. After being stirred for 1 h at 208C, the reaction mixture was
poured into water. The product was extracted with hexane (2 ꢀ
20 mL). The combined organic layer was dried over sodium sulfate
and concentrated. Purification of the crude oil by silica-gel column
chromatography (hexane) provided the corresponding (E)-1,2-di-
silylethene 1a (102 mg, 0.43 mmol) in 87% yield.
2b: Anhydrous cobalt(ii) chloride (97.5 mg, 0.75 mmol) was
placed in a 30-mL reaction flask and dried in vacuo for 2 min.
Anhydrous THF (5.0 mL) was added under argon, and the mixture
was stirred for 3 min at room temperature. A solution of dimethyl-
(phenyl)silylmethylmagnesium chloride in diethyl ether (0.95m;
3.16 mL, 3.0 mmol) was added dropwise to the reaction mixture at
À208C. After the mixture was stirred for 15 min at À208C,
dibromobis(trimethylsilyl)methane (159 mg, 0.50 mmol) was added
dropwise to the reaction mixture at À208C. After being stirred for an
additional 1 h at À208C, the reaction mixture was poured into water.
The product was extracted with hexane (2 ꢀ 20 mL). The combined
organic layer was dried over sodium sulfate and concentrated. Silica-
gel column chromatography (hexane) followed by gel-permeation
chromatography (toluene, to remove by-products described above)
provided the corresponding 1,1,2-trisilylethene 2b (111 mg,
0.36 mmol) in 73% yield.
[7] A. Inoue, J. Kondo, H. Shinokubo, K. Oshima, Chem. Lett. 2001,
956 – 957, and references therein.
[8] For the cobalt-mediated reaction of dibromocyclopropane with
methyl and butyl Grignard reagents, see: Y. Nishii, K. Wakasugi,
Y. Tanabe, Synlett 1998, 67 – 69.
[9] We previously reported the manganese-catalyzed reaction of
dibromo(silyl)methane with alkyl Grignard reagents to form 1-
silyl-1-alkene, and only one example of the synthesis of 1,2-
disilylethene was described. However, the reaction is not very
=
efficient (tBuMe2SiCH CHSiMe3, 57% yield by using a stoi-
chiometric amount of manganate complex
Received: February 16, 2005
Published online: April 28, 2005
a
[(Me3SiCH2)3MnMgCl]): a) H. Kakiya, R. Inoue, H. Shinokubo,
K. Oshima, Tetrahedron Lett. 1997, 38, 3275 – 3278; b) H.
Kakiya, H. Shinokubo, K. Oshima, Bull. Chem. Soc. Jpn. 2000,
73, 2139 – 2147.
Keywords: alkenes · cobalt · Grignard reagents · silicon ·
synthetic methods
.
[10] The exact structure of the species [(R3 SiCH2)4Co(MgCl)2] in
3
solution is not clear. For convenience, we use this expression.
Several organocobaltate(ii) compounds were characterized by
X-ray crystallographic analysis: R. S. Hay-Motherwell, G. Wil-
kinson, B. Hussain, M. B. Hursthouse, Polyhedron 1990, 9, 931 –
937.
[1] a) K. Oshima in Science of Synthesis (Houben-Weyl), Vol. 4 (Ed.:
I. Fleming), Georg Thieme, Stuttgart, 2002, chap. 4.4.34; b) K.
Miura, A. Hosomi in Main Group Metals in Organic Synthesis,
Vol. 2 (Eds.: H. Yamamoto, K. Oshima), Wiley-VCH, Wein-
heim, 2004, chap. 10.4; c) J. S. Panek in Comprehensive Organic
Chemistry, Vol. 1 (Eds.: B. M. Trost, I. Fleming), Pergamon,
Oxford, 1991, chap. 2.5; d) M. A. Brook, Silicon in Organic,
Organometallic, and Polymer Chemistry, Wiley-VCH, New
York, 2000.
[2] a) H. Sakurai, K. Ebata, K. Sakamoto, Y. Nakadaira, C. Kabuto,
Chem. Lett. 1988, 965 – 968; b) H. Schmidbaur, J. Ebenhoech, Z.
Naturforsch. B 1987, 42, 1543 – 1548; c) M. Kira, H. Nakazawa,
H. Sakurai, J. Am. Chem. Soc. 1983, 105, 6983 – 6987; d) H.
Sakurai, Y. Nakadaira, H. Tobita, T. Ito, K. Toriumi, H. Ito, J.
Am. Chem. Soc. 1982, 104, 300 – 302.
[11] For a review on cobaltate complexes, see: T. Kauffmann, Angew.
Chem. 1996, 108, 401 – 418; Angew. Chem. Int. Ed. Engl. 1996,
35, 386 – 403.
[12] For examples of halogen–metal exchange between gem-diha-
loalkane and ate complexes followed by alkyl migration, see: A.
Inoue, J. Kondo, H. Shinokubo, K. Oshima, Chem. Eur. J. 2002,
8, 1730 – 1740, and references therein.
[13] a) F. Kakiuchi, A. Yamada, N. Chatani, S. Murai, N. Furukawa,
Y. Seki, Organometallics 1999, 18, 2033 – 2036; b) Y. Wakatsuki,
H. Yamazaki, M. Nakano, Y. Yamamoto, J. Chem. Soc. Chem.
Commun. 1991, 703 – 704; see also reference [5].
[3] a) T. Suzuki, P. Y. Lo, J. Organomet. Chem. 1990, 391, 19 – 25;
b) E. Lukevics, Z. V. Belyakova, M. G. Pomerantseva, M. G.
3490
ꢀ 2005 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Angew. Chem. Int. Ed. 2005, 44, 3488 –3490