Garc´ıa-Cuadrado et al.
FIGURE 3. Isomeric bromoquinolizinium bromides.
proven to be extremely useful to build carbon-carbon12 or
carbon-heteroatom13 bonds. Although the methodology has
been applied to a variety of heterocycles,14 to the best of our
knowledge, only Zoltewicz15 has reported an example involving
a cationic heteroaromatic stannane. Our initial results demon-
strated that both haloquinolizinium16 and haloazinium cations17
are appropriate partners in the Stille reaction. We report here
our full investigations in a comparative study and discuss the
scope of the functionalization of quinolizinium salts using Stille
and Suzuki reactions.
FIGURE 2. DNA intercalators based on a quinolizinium and an aza-
quinolizinium core.
such as 1-3, which are based on a quinolizinium and an aza-
quinolizium core and behave as a new class of DNA interca-
lators and Topo I inhibitors5c,10 (Figure 2).
Results and Discussion
As an example, introduction of substituents in systems 1-3
in order to improve their DNA binding properties and/or
antiproliferative activity cannot easily be achieved using classical
methods in heterocyclic chemistry. In this respect, electrophilic
substitution is not a useful strategy for a positively charged
heterocycle; nucleophiles usually react to give addition reactions
that in many cases yield ring-opening products, and furthermore,
metalation is a process with poor selectivity and is restricted to
the use of non-nucleophilic bases. On the other hand, the
traditional strategy of using appropriately substituted starting
materials11 is limited by either the tolerance of such substituents
to the reaction conditions or their negative influence on the
reactivity of such substrates.
For our investigation we chose the quinolizinium cation as
the simplest model that offers four possible positions to explore
substitution on quinolizium-type cations by palladium-mediated
cross-coupling processes. The four isomeric bromoquinolizinium
cations 4-7 (Figure 3) appeared to be the most appropriate
models to study the scope of substitution on these charged
heterocycles since they exhibit markedly different behavior from
an electronic point of view at the C1/C3 and C2/C4 positions.
Moreover, one would also expect a different steric effect on
C1/C4 and C2/C3.
These four cations can be prepared according to previously
reported procedures,18 but their syntheses were not particularly
efficient, mainly for 1-bromoquinolizinium bromide (4), which
is obtained by bromination of quinolizinium bromide. This is a
difficult reaction that was carried out at 200 °C and afforded
only 10% yield of this bromo derivative (1.5% overall yield).18a
We were able to improve the syntheses of 4 and 618a using a
new approach to the quinolizinium system. This approach is
based on a ring-closing metathesis (RCM) reaction on 1-butenyl-
The lack of a general methodology to achieve substitutions
particularly on quinolizium-type cationssand our interest in this
field led us to study a promising approach involving a palladium-
catalyzed cross-coupling methodology. This approach has
(5) (a) Gago, F. Methods Enzymol. 1998, 14, 277. (b) Wilson, W. D.;
Jones, R. In Intercalation Chemistry; Whittingham, M. S., Jacobson, A. J.,
Eds.; Academic Press: New York, 1981. (c) Martinez, V.; Burgos, C.;
Alvarez-Builla, J.; Fernandez, G.; Domingo, A.; Garcia-Nieto, R.; Gago,
F.; Manzanares, I.; Cuevas, C.; Vaquero, J. J. J. Med. Chem. 2004, 47,
1136.
(6) (a) Froelich-Ammon, S. J.; Osheroff, N. J. Biol. Chem. 1995, 270,
21429. (b) Hsieh, T. In DNA Topology and Its Biologic Effects; Cozzarelli,
N. R., Wang, J. C., Eds.; Cold Spring Harbor: New York, 1990; Chapter
7.
(7) (a) Yokoyama, Y.; Takahashi, Y.; Shinohara, A.; Lian, Z.; Wan, X.;
Niwa, K.; Tamaya, T. Cancer Res. 1998, 58, 5406. (b) Pitts, A. E.; Corey,
D. R. Proc. Natl. Acad. Sci. U.S.A. 1998, 95, 11549.
(8) (a) Facchetti, A.; Abbotto, A.; Beverina, L.; van der Boom, M. E.;
Dutta, P.; Evmenenko, G.; Marks, T. J.; Pagani, G. A. Chem. Mater. 2002,
14, 4996. (b) Mata, J. A.; Uriel, S.; Llusar, R.; Peris, E. Organometallics
2000, 19, 3797.
(12) (a) Tsuji, J. Palladium Reagents and Catalysts: InnoVations in
Organic Synthesis; John Wiley & Sons: Chichester, 1995; Chapter 4, p
125. (b) Farina, F. In ComprehensiVe Organometallic Chemistry II; Abel,
E. W., Stone, F. G. A., Wilkinson, G., Eds.; Pergamon Press: Oxford, 1995;
Vol. 12, Chapter 3.4, p 161. (c) In Metal-catalyzed Cross-coupling
Reactions; Diederich, F., Stang, P. J., Eds.; Wiley-VCH: Weinheim, 1998.
(d) In PerspectiVes in Organopalladium Chemistry for the XXI Century;
Tsuji, J., Ed.; Elsevier Press: Lausanne, Switzerland, 1999.
(13) (a) Hartwig, J. F. Angew. Chem., Int. Ed. Engl. 1998, 37, 2046. (b)
Harwig, J. F. Facc. Chem. Res. 1998, 31, 852. (c) Hartwig, J. F. J. Org.
Chem. 1999, 64, 5575. (d) Frost, C. G.; Mendoc¸a, P. J. Chem. Soc., Perkin
Trans. 1 1998, 2615. (e) Undheim, K.; Beneche, T. AdV. Heterocycl. Chem.
1995, 62, 330. (f) Wolfe, J. P.; Tomori, H.; Sadighi, J. P.; Jingjun Yin, J.;
Buchwald, S. L. J. Org. Chem. 2000, 65, 1158.
(14) (a) Undheim, K.; Benneche, T. AdV. Heterocycl. Chem. 1995, 62,
330. (b) Kalinin, V. N. Synthesis 1992, 413. (c) Li, J. J.; Gribble, G. W.
Palladium in Heterocyclic Chemistry; Pergamon: Oxford, 2000.
(15) (a) Zoltewicz, J. A.; Cruskie, M. P. J. Org. Chem. 1995, 60, 3487.
(b) Zoltewicz, J. A; Cruskie, M. P., Jr.; Dill, C. D. J. Org. Chem. 1995, 60,
0, 264.
(16) Barch´ın, B. M.; Valenciano, J.; Cuadro, A. M.; Alvarez-Builla, J.;
Vaquero, J. J. Org. Lett. 1999, 1, 545.
(17) Garc´ıa-Cuadrado, D.; Cuadro, A. M.; Alvarez-Builla, J.; Vaquero,
J. J. Synlett 2002, 11, 1904.
(18) For the synthesis of 1-bromo-(4), 3-bromo-(6), and 4-bromoquino-
lizinium (7), see: (a) Sanders, G. M.; van Dijk, M.; van der Plas, H. C.
Heterocycles 1981, 15, 213. For the synthesis of 2-bromoquinolizinium (5),
see: (b) Fozard, A.; Jones, G. J. Chem. Soc. 1963, 2203.
(9) (a) Seddon, K. R. Nat. Mater. 2003, 2, 363. (b) Welton, T. Chem.
ReV. 1999, 99, 2071.
(10) (a) Pastor, J.; Siro´, J.; Garc´ıa-Nav´ıo, J. L.; Vaquero, J. J.; Rodrigo,
M. M.; Ballesteros, M.; Alvarez-Builla, J. Bioorg. Med. Chem. Lett. 1995,
5, 3043. (b) Pastor, J.; Siro´, J.; Garc´ıa Nav´ıo, J. L.; Vaquero, J. J.; Alvarez-
Builla, J.; Gago, F.; Pascual-Teresa, B.; Pastor, M.; Rodrigo, M. J. Org.
Chem. 1997, 62, 5476. (c) Molina, A.; Vaquero, J. J.; Garc´ıa-Nav´ıo, J. L.;
Alvarez-Builla, J.; Rodrigo, M. M.; Castan˜o, O.; Andre´s, J. L. Bioorg. Med.
Chem. Lett. 1996, 6, 1453. (d) Molina, A.; Vaquero, J. J.; Garc´ıa-Nav´ıo, J.
L.; Alvarez-Builla, J.; Pascual-Teresa, B.; Gago, F.; Rodrigo, M. M. J. Org.
Chem. 1999, 64, 3907. (e) Fontana, A.; Benito, E. J.; Mart´ın, J. M.; Sa´nchez,
N.; Alajarin, R.; Vaquero, J. J.; Alvarez-Builla, J.; Lambel-Giraudet, S. L.;
Pierre, A.; Caignard, D. Bioorg. Med. Chem. Lett. 2002, 12, 2611.
(11) Vaquero, J. J.; Alvarez-Builla, J. In AdVances in Nitrogen Hetero-
cycles; Moody, C. J., Ed.; JAI Press: Stamford, CT, 2000; Vol. 4, p 159.
7990 J. Org. Chem., Vol. 71, No. 21, 2006