P. A. Amaral et al. / Tetrahedron Letters 49 (2008) 6607–6609
6609
In summary, we have devised two approaches for the prepara-
tion of kavalactone derivatives, a class of compounds with interest-
ing biological activities. The potential of yangonin to inhibit the
LPS-stimulated TNF-a production in human whole blood is cur-
rently in progress. Further work to extend the Suzuki–Miyaura
cross coupling to a diverse range of easily available boronic acids
with Z and E iodoacrolein is underway in our laboratory.
Acknowledgements
This work was supported by CAPES/COFECUB project 418/03.
The authors thank Pr. P. van de Weghe, for helpful discussion,
one of reviewers for his comments and Centre Régional de Mesures
Physiques de L’Ouest (CRMPO) in Rennes (France) for performing
HRMS analyses.
Scheme 3.
Supplementary data
Supplementary data associated with this article can be found, in
References and notes
1. (a) Hansel, V. R.; WeiB, D.; Schmidt, B. Planta Med. 1966, 14, 1–9; (b) Singh, Y. N.
J. Ethnopharmacol. 1983, 7, 267–276; (c) Sung, Y. N.; Blumentahl, M.
Herbalgram 1997, 39, 33–56.
2. (a) Keledjian, J.; Duffield, P. H.; Jamieson, D. D.; Lidgard, R. O.; Duffileld, M. J.
Pharm. Sci. 1988, 77, 1003–1006; (b) Backhauss, C.; Krieglstein, J. Eur. J.
Pharmacol. 1992, 215, 265–269; (c) Gleitz, J.; Friese, J.; Beile, A.; Peters, T. Eur. J.
Pharmacol. 1996, 315, 89–97; (d) Seitz, U.; Ameri, A.; Pelzer, H.; Gleitz, J.; Peters,
T. Planta Med. 1997, 63, 303–306; (e) Schmidt, N.; Ferger, B. Synapse 2001, 40,
47–54; (f) Bilia, A. R.; Gallori, S.; Vincieri, F. F. Life Science 2002, 70, 2581–
2597.
Scheme 4.
3. Matsuda, H.; Hirata, N.; Kawaguchi, Y.; Naruto, S.; Takata, T.; Oyama, M.;
Iinuma, M.; Kubo, M. Biol. Pharm. Bull. 2006, 29, 834–837.
4. Hashimotp, T.; Suganuma, M.; Fujiki, H.; Yamada, M.; Kohno, T.; Asakawa, Y.
Phytomedicine 2003, 10, 309–317.
5. (a) Parmar, V. S.; Jain, S. C.; Bisht, K. S.; Jain, R.; Taneja, P.; Jha, A.; Tyagi, O. D.;
Prasad, A. K.; Wengel, J.; Olsen, C. E.; Boll, P. M. Phytochemistry 1997, 64, 597–
673; (b) Dharmaratne, H. R. W.; Nanayakkara, N. P. D.; Khan, I. A.
Phytochemistry 2002, 59, 429–433.
Scheme 5. Synthesis of yangonin 1 and desmethoxyyangonin 2.
6. (a) Boucard, V.; Broustal, G.; Campagne, J.-M. Eur. J. Org. Chem. 2007, 225–236;
(b) Marco, J. A.; Carda, M.; Murga, J. Tetrahedron 2007, 63, 2929–2958.
7. (a) Piantosi, C.; Skulason, V. G. J. Pharm. Sci. 1964, 53, 902–905; (b) Izawa, T.;
Mukaiyama, T. Chem. Lett. 1975, 161–164; (c) Israili, Z. H.; Smissman, E. E. J.
Org. Chem. 1976, 41, 4070–4074; (d) Feffstrup, T.; Boll, P. M. Acta Chem. Scand. B
1976, 30, 613–618; (e) Rosen, J. D.; Nelson, T. D.; Huffman, M. A.; McNamara, J.
M. Tetrahedron Lett. 2003, 44, 365–368; (f) Pierres, C.; George, P.; Hijfte, L. V.;
Ducep, J.-B.; Hibert, M.; Mann, A. Tetrahedron Lett. 2003, 44, 3645–3647.
8. (a) Fowler, E. M. F.; Henbest, H. B. Chem. Soc. 1950, 3642–3652; (b) Castellino,
S.; Sims, J. Tetrahedron Lett. 1984, 25, 4059–4062; (c) Spino, C.; Mayes, N.;
Desfossés, H. Tetrahedron Lett. 1996, 37, 6503–6506; (d) Du, H.; Zhai, D.; Ding,
K. Chem. Eur. J. 2004, 10, 5964–5970; (e) Smith, T. E.; Djang, M.; Velander, A. J.;
Downey, M.; Carroll, K. A.; Alphen, S. V. Org. Lett. 2004, 6, 2317–2323; (f) Xang,
D.-F. ; Yue, M.-J. Synlett 2005, 2077–2079; (g) Sabitha, G.; Sudhakar, K.; Yadav,
J. S. Tetrahedron Lett. 2006, 47, 8599–8602; (h) Kamal, A.; Krishnaji, T.; Khanna,
G. B. R. Tetrahedron Lett. 2006, 47, 8657–8660.
9. Amaral, P. A.; Bergold, A. M.; Eifler-Lima, V. L.; Santos, E. M.; Oliveira, E. R.;
Campos-Buzzi, F.; Cechinel-Filho, V. J. Pharm. Pharmaceut. Sci. 2005, 8, 69–75.
10. Beletskaya, I. P.; Cheprakov, A. V. Chem. Rev. 2000, 100, 3009–3066.
11. Lahred, M.; Hallberg, A. J. Org. Chem. 1996, 61, 9582–9584.
12. Kappe, O. Angew. Chem., Int. Ed. 2004, 43, 6250–6283.
13. Marek, I.; Meyer, C.; Normant, J. F. Org. Synth. 1997, 74, 194–204.
14. Barder, T. E.; Walker, S. D.; Martinelli, J. R.; Buchwald, S. L. J. Am. Chem. Soc.
2005, 127, 4685–4696.
a E/Z mixture since the Suzuki–Miyaura reaction was known to be
a stereoselective cross-coupling reaction.16,17 1H NMR analysis of
each crude compound indicated the E/Z ratio: 70/30, 83/17 and
24/76 for 4a, 4b and 4e, respectively.
Initially, we thought that the formation of E-isomers was the
result of thermal isomerization of the pyrone 5 or the cross-
coupling products 4. Nevertheless no notable isomerization has
been observed when these pyrones were heated in toluene at
80 °C for 24 h. Yet we observed that treatment of pyrone 4a (Z
isomer) in the cross-coupling conditions without boronic acid led
to partial isomerization (Z/E = 100/0–73/27) after 20 h at 80 °C in
toluene (Scheme 3). This could be explained by possible formation
of a
p
-allyl-Pd(II) intermediate in the reaction mixture and well-
known syn–anti isomerization via a
p–r–p
process18 (Scheme 4).
On the other hand, no isomerization occurred with the vinylic io-
dide 5. Probably, the oxidative addition of Pd(0) in the carbon–io-
dine bond is faster than the formation of the
p-allylpalladium
intermediate. More experiments are needed, and the results of
these studies will be reported in due course.
In the final step of the reaction sequence products (E)-4a and
(E)-4b were easily converted into the desired target yangonin 1
and desmethoxyyangonin 2, refluxing benzene with DDQ for 2 h4
(80% and 75% yields, respectively) (Scheme 5).
15. Miura, M. Angew. Chem., Int. Ed. 2004, 43, 2201–2203.
16. Gaukroger, K.; Hadfield, J. A.; Hepworth, L. A.; Lawrence, N. J.; McGown, A. T. J.
Org. Chem. 2001, 66, 8135–8138.
17. Katayama, H.; Nagao, M.; Ozawa, F.; Ikegami, M.; Arai, T. J. Org. Chem. 2006, 71,
2699–2705.
18. Ogasawara, M.; Takizawa, K.-I.; Hayashi, T. Organometallics. 2002, 21, 4853–
4861.