C O M M U N I C A T I O N S
compare well when extrapolated to RNA concentrations typical of
NMR studies (Supporting Information).
Having demonstrated the 19F NMR behavior of hairpins and
duplexes, we proceeded with self-complementary sequences that
are prone to exist in a mixture of structures. In the case of 5′-
CGCrFAAUUGGCG we observed a pronounced shift with sigmoid
character for the 2-F 19F resonance indicating hairpin formation
throughout the whole temperature region measured (Figure 3, left).
In the case of 5′-CGCrFAAUUAGCG we observed a distinctly
different signal pattern (Figure 3, right): the constitutional change
of rF:G to rF:A resulted in a second set of 2-F and 4-F resonances
at low temperatures indicating significant duplex over hairpin
competition. The comparison of these two oligonucleotides nicely
exemplifies the convenience of the 19F NMR analysis presented
here. Although basic characterization of such structural equilibria
can be performed by gel shift assays or UV melting profile analysis
the advantage of the 19F NMR approach is direct quantification of
duplex/hairpin populations in a concentration range that is hardly
accessible by the alternative methods.
Figure 3. Structure equilibria of self-complementary RNAs. 19F NMR
spectra at different temperatures; cRNA ) 0.3 mM; 25 mM Na2HAsO4, no
additional salt, pH 6.5; for interpretation see main text.
applications that are incompatible with the decrease in thermody-
namic stability resulting from an A:U to A:rF replacement (Sup-
porting Information).
Acknowledgment. We thank the Austrian Science Fund FWF
for support grant P17864 and Dr. Breuker for advice in error analysis.
Supporting Information Available: Synthesis of rF; analysis of
other rF/dF/5FU RNAs/DNAs; UV melting analysis. This material is
References
(1) (a) Montagne, R. K.; Batey, R. T. Annu. ReV. Biophys. 2008, 37, 117–133.
(b) Winkler, W.; Nahvi, A.; Breaker, R. R. Nature 2002, 419, 952–956.
(2) (a) Bayer, T. S.; Smolke, C. D. Nat. Biotechnol. 2005, 23, 337–343. (b)
Win, M. N.; Smolke, C. D. Biotechnol. Gen. Eng. ReV. 2007, 24, 311–
346.
(3) (a) Plevnik, M.; Gdaniec, Z.; Plavec, J. Nucleic Acids Res. 2005, 33, 1749–
1759. (b) Balkwill, G. D.; Williams, H. E. L.; Searle, M. S. Org. Biomol.
Chem. 2007, 5, 832–839. (c) Sun, X.; Li, J. M.; Wartell, R. M. RNA 2007,
13, 2277–2286. (d) Ho¨bartner, C.; Ebert, M.-O.; Jaun, B.; Micura, R. Angew.
Chem., Int. Ed. 2002, 41, 605–609. (e) Micura, R.; Pils, W.; Ho¨bartner,
C.; Grubmayr, K.; Ebert, M.-O.; Jaun, B. Nucleic Acids Res. 2001, 29,
3997–4005.
(4) (a) Bernacchi, S.; Ennifar, E.; To´th, K.; Walter, P.; Langowski, J.; Dumas,
P. J. Biol. Chem. 2005, 280, 40112–40121. (b) Bernacchi, S.; Freisz, S.;
Maechling, C.; Spiess, B.; Marquet, R.; Dumas, P.; Ennifar, E. Nucleic
Acids Res. 2007, 35, 7128–7139. (c) Ennifar, E.; Bernacchi, S.; Wolff, P.;
Dumas, P. RNA 2007, 13, 1445–1452. (d) Nakano, S.-i.; Kirihata, T.; Fujii,
S.; Sakai, H.; Kuwahara, M.; Sawai, H.; Sugimoto, N. Nucleic Acids Res.
2007, 35, 486–494. (e) Pallan, P. S.; Kreutz, C.; Bosio, S.; Micura, R.;
Egli, M. RNA 2008, 14, 2125–2135.
(5) (a) Kreutz, C.; Ka¨hlig, H.-P.; Konrat, R.; Micura, R. J. Am. Chem. Soc.
2005, 127, 11558–11559. (b) Kreutz, C.; Ka¨hlig, H.-P.; Konrat, R.; Micura,
R. Angew. Chem., Int. Ed. 2006, 45, 3450–3453.
(6) (a) Hennig, M.; Scott, L. G.; Sperling, E.; Bermel, W.; Williamson, J. R.
J. Am. Chem. Soc. 2007, 129, 14911–14921. (b) Hennig, M.; Munzarova´,
M. L.; Bermel, W.; Scott, L. G.; Sklena´r, V.; Williamson, J. R. J. Am.
Chem. Soc. 2006, 128, 5851–5858. (c) Arnold, J. R. P.; Fisher, J. J. Biomol.
Struct. Dyn. 2000, 17, 843–856. (d) Olsen, G. L.; Edwards, T. E.; Deka,
P.; Varani, G.; Sigurdsson, S. Th.; Drobny, G. P. Nucleic Acids Res. 2005,
33, 3447–3454.
Figure 2. Bimolecular melting transition of a fluorine-labeled RNA: (A)
RNA sequence; (B) 19F NMR spectra at different temperatures; (C) UV
melting profile (cRNA ) 16 µM; 10 mM Na2HPO4, 150 mM NaCl, pH 7.0);
(D) melting profile derived from R/T graph of ∂4F and ∂2F (cRNA ) 0.6 mM;
25 mM Na2HAsO4, no additional salt, pH 6.5).
From a NMR spectroscopic point of view, the approach is user-
friendly compared to the analysis of structure equilibria of non-
1
labeled RNA by H NMR spectroscopy that suffers from severe
signal overlap. Moreover, when detection occurs via imino protons
of Watson Crick base pairs the reliance on exchangeable NH-N
nuclei is disadvantegeous for the quantification of structure
equilibria, for investigations at elevated temperatures, or for
investigations at different buffer conditions that affect H/D exchange
rates. Compared to other 19F NMR studies of nucleic acids, the
present application is a first example how temperature dependent
shifts of 19F resonances can be advantageously used for the analysis
of dynamic RNA secondary structure equilibria.
(7) Scott, L. G.; Geierstanger, B. H.; Williamson, J. R.; Hennig, M. J. Am.
Chem. Soc. 2004, 126, 11776–11777.
(8) (a) Gmeiner, W. H.; Pon, R. T.; Lown, J. W. J. Org. Chem. 1991, 56,
3602–3608. (b) Barhate, N. B.; Barhate, R. N.; Cekan, P.; Drobny, G.;
Sigurdsson, S. Th. Org. Lett. 2008, 10, 2745–2747.
(9) (a) Yi-Brunozzi, H. Y.; Brinson, R. G.; Brabazon, D. M.; Lener, D.; Le
Grice, S. F. J.; Marino, J. P. Chem. Biol. 2008, 15, 254–262. (b) Pfaff,
D. A.; Clarke, K. M.; Parr, T. A.; Cole, J. M.; Geierstanger, B. H.;
Tahmassebi, D. C.; Dwyer, T. J. J. Am. Chem. Soc. 2008, 130, 4869–
4878. (c) Parsch, J.; Engels, J. W. J. Am. Chem. Soc. 2002, 124, 5664–
5672. (d) Parsch, J.; Engels, J. W. HelV. Chim. Acta 2000, 83, 1791–1808.
(10) (a) Xia, J.; Noronha, A.; Toudjarska, I.; Li, F.; Akinc, A.; Braich, R.; Frank-
Kamenetsky, M.; Rajeev, K. G.; Egli, M.; Manoharan, M. ACS Chem. Biol.
2006, 1, 176–183. (b) Li, F.; Pallan, P. S.; Maier, M. A.; Rajeev, K. G.;
Mathieu, S. L.; Kreutz, C.; Fan, Y.; Sanghvi, J.; Micura, R.; Rozners, E.;
Manoharan, M.; Egli, M. Nucleic Acids Res. 2007, 35, 6424–6438. (c)
Somoza, A.; Chelliserrykattil, J.; Kool, E. T. Angew. Chem., Int. Ed. 2006,
45, 4994–4997.
19F labeling of RNA with single nonexchangeable fluorine atoms
has become straightforward in recent years and has become an
integrated part of engineered functional RNA with therapeutic
potential, for example, for aptamer, ribozyme, and siRNA technolo-
gies. We have furthermore demonstrated the broad applicability of
the approach for DNA structure equilibria and exemplarily for
another type of fluoro label. The latter is of relevance for specific
JA806716S
9
J. AM. CHEM. SOC. VOL. 130, NO. 51, 2008 17231