Sureshbabu et al.
peptide nucleic acids,27 peptides containing nonproteinogenic
amino acids, N-hydroxy peptides,28 selenocystine containing
peptide libraries,29 peptide ꢀ-turn mimetics,30 Weinreb amido
peptides,31 peptide heterocycles and peptide mimics, amino acid
derivatives such as R-methylated amino acids,32 fluorinated
amino acids,33 R-hydroxy ꢀ-amino amides,34 and thiazoles.35
Polyfunctionalized 1-isocyano-2-methylamino-alkenes derived
from simple R-isocyano esters have been used in diversity-
oriented organic synthesis.36 Solid-phase multicomponent reac-
tions using resin-bound isonitriles have also been described.37
The isocyano compounds (Figure 1) have played a vital role
in developing new MCR-based routes for peptide and peptide
derivatives. Their numerous synthetic applications in peptide
as well as peptidomimetic chemistry have been reported. They
have been synthesized through different methods and isolated
mostly as liquids or low melting solids. On the other hand,
contrary to R-isocyano esters/amides, insertion of the isocyano
group in place of the carboxylic group of amino acids can also
be accomplished to generate a new class of N-protected amino
isonitriles. With the expanding area of peptidomimetics and
increasing interest in new classes of molecules for combinatorial
synthesis, these novel isonitriles may form a useful set of
monomers to carry out several reactions leading to synthesis of
novel amino acid/peptide derivatives, construction of libraries
of new compounds, and obtaining MCR adducts with modified
structures. However, the synthesis of such type of N-protected
amino alkyl isonitriles starting from amino acids and their
synthetic applications still have to be demonstrated. In view of
this, we herein report the synthesis of optically active isonitriles
derived from N-Fmoc amino acids (Figure 2), which to the best
of our knowledge are hitherto unreported, and demonstrate one
FIGURE 1. R-Isocyano esters/amides.
products and biologically active molecules.19 The vast literature
on the preparation, properties, and reactions of the isonitriles
has been reviewed by various workers.20
In peptide chemistry, isonitriles of the type R-isocyano ester/
amide (Figure 1) that are obtained by converting the amino
group of amino acid ester into an isocyano group are well
known. Since the discovery of their use in peptide synthesis by
Ivar Ugi, these compounds are being explicitly employed in
the synthesis of amino acid and peptide derivatives. Peptide
synthesis via the Ugi four-component condensation of these
isonitriles with cleavable amine or aldehyde components has
been well described. Special cleavable isonitriles have also been
employed for MCR-based peptide synthesis.21 They are also
used to assemble di- and tripeptides containing tandem R,R-
diisopropyl and diphenyl glycyl residues,22 for macrocyclization
of oligopeptides,23 synthesis of ꢀ-lactams and other small and
medium ring sized lactams,24 glycopeptides,25 depsipeptides,26
(14) For combinatorial synthesis, see: (a) Armstrong, R. W.; Combs, A. P.;
Tempest, P. A.; Brown, S. D.; Keating, T. A. Acc. Chem. Res. 1996, 29, 123–
135. For macroarrays, see: (b) Lin, Q.; O’Neill, J. C.; Blackwell, H. E. Org.
Lett. 2005, 7, 4455–4458. For macrocycles, see: (c) Beck, B.; Larbig, G.; Mejat,
B.; Magnin-Lachaux, M.; Picard, A.; Herdtweck, E.; Domling, A. Org. Lett.
2003, 5, 1047–1050. (d) Rivera, D. G.; Wessjohann, L. A. J. Am. Chem. Soc.
2006, 128, 7122–7123. For natural product synthesis, see: (e) Fukuyama, T.;
Robins, B. D.; Sachleben, R. A. Tetrahedron Lett. 1981, 22, 4155–4158. (f) De
Laszlo, S. E.; Williard, P. G. J. Am. Chem. Soc. 1985, 107, 199–203. (g) Bauer,
S. M.; Armstrong, R. W. J. Am. Chem. Soc. 1999, 121, 6355–6366.
(15) For benzodiazepines, see: (a) Kotsuki, H.; Wakao, M.; Hayakawa, H.;
Shimanouchi, T.; Shiro, M. J. Org. Chem. 1996, 61, 8915–8920. (b) Keating,
T. A.; Armstrong, R. W. J. Org. Chem. 1996, 61, 8935–8939. (c) Ilyn, A. P.;
Trifilenkov, A. S.; Kuzovkova, J. A.; Kutepov, S. A.; Nikitin, A. V.; Ivachtch-
enko, A. V. J. Org. Chem. 2005, 70, 1478–1481. For thiazepines, see: (d)
Marcaccini, S.; Miguel, D.; Torroba, T.; Garcia-Valverde, M. J. Org. Chem.
2003, 68, 3315–3318. For diketopiperazine, see: (e) Kennedy, A. L.; Fryer, A. M.;
Josey, J. A. Org. Lett. 2002, 4, 1167–1170. For pyrolidinones, see: (f) Beck, B.;
Picard, A.; Herdtweck, E.; Domling, A. Org. Lett. 2004, 6, 39–42. For
morpholines, see: (g) Kim, Y. B.; Choi, E. H.; Keum, G.; Kang, S. B.; Lee,
D. H.; Koh, H. Y.; Kim, Y. Org. Lett. 2001, 3, 4149–4152.
(16) For Ugi 4CR of isonitriles with acidic components such as azides, see:
(a) Umkehrer, M.; Kolb, J.; Burdack, C.; Ross, G.; Hiller, W. Tetrahedron Lett.
2004, 45, 6421–6424. With CO2, see: (b) Haslinger, E. Monatsh. Chem. 1978,
109, 749–750. With cyanate, see: (c) Short, K. M.; Ching, B. W.; Mjalli, A. M. M.
Tetrahedron Lett. 1996, 37, 7489–7492. With thiocyanate, see: (d) Ugi, I.;
Rosendalh, F. K.; Bodeshime, F. Liebigs Ann. Chem. 1963, 666, 54–61.
(17) For condensation of isonitriles with epoxide and aziridines, tropylium
ion and water, see: (a) Kern, O. T.; Motherwell, W. B. Chem. Commun. 2003,
2988–2989. (b) Ugi, I.; Betz, W.; Offermann, K. Chem. Ber. 1964, 97, 3008–
3010.
(24) (a) Kehagia, K.; Domling, A.; Ugi, I. Tetrahedron 1995, 51, 139–144.
(b) Domling, A.; Kehagia, K.; Ugi, I. Tetrahedron 1995, 51, 9519–9522. (c)
Gedey, S.; Van der Eycken, J.; Fulop, F. Org. Lett. 2002, 4, 1967–1969. (d)
Harriman, G. C. B. Tetrahedron Lett. 1997, 38, 5591–5594.
(25) Chapman, T. M.; Davies, I. G.; Gu, B.; Block, T. M.; Scopes, D. I. C.;
Hay, P. A.; Courtney, S. M.; McNeill, L. A.; Schofield, C. J.; Davis, B. G.
J. Am. Chem. Soc. 2005, 127, 506–507.
(26) Leon, F.; Rivera, D. G.; Wessjohann, L. A. J. Org. Chem. 2008, 73,
1762–1767.
(27) For the synthesis of peptide nucleic acids (PNAs) by multicomponent
condensation using isonitrile Fmoc-Gly-ψ[CH2NC] prepared starting from 1,2
diaminoethane, see: (a) Wang, W. H.; Zou, X. M.; Zhang, X.; Fu, Y. Q.; Xu, P.
Chin. Chem. Lett. 2005, 16, 585–588. (b) Maison, W.; Schemminger, I.;
Westerhoff, O.; Martens, J. Bioorg. Med. Chem. Lett. 1999, 9, 581–584. (c)
Domling, A.; Chi, K.-Z.; Barrere, M. Bioorg. Med. Chem. Lett. 1999, 9, 2871–
2874. (d) Domling, A. Nucleosides Nucleotides 1998, 17, 1667–1670. (e)
Domling, A.; Richter, W. Nucleosides Nucleotides 1997, 16, 1753–1756. (f) Xu,
P.; Zhang, T.; Wang, W.; Zou, X.; Zhang, X.; Fu, Y. Synthesis 2003, 2003,
1171–1176. (g) Wang, W. H.; Zhang, T.; Xu, P. Chinese Pharm. Sci. 2003, 12,
66–70; Chem. Abstr. 2003, 140, 199708.
(28) For non-proteinogenic amino acids, see: (a) Groger, H.; Hatam, M.;
Martens, J. Tetrahedron 1995, 51, 7173–7180. For N-hydroxy peptides, see: (b)
Zinner, G.; Moderhack, D.; Kliegel, W. Chem. Ber. 1969, 102, 2536–2516.
(29) Abbas, M.; Bethke, J.; Wessjohann, L. A. Chem. Commun. 2006, 541–
543.
(18) For application of polyfunctionalized and convertible isonitriles in Ugi
4CR, see: (a) Linderman, R. J.; Binet, S.; Petrich, S. R. J. Org. Chem. 1999, 64,
336–337. (b) Keating, T. A.; Armstrong, R. W. J. Am. Chem. Soc. 1995, 117,
7842–7843.
(19) (a) Scheuer, P. Acc. Chem. Res. 1992, 25, 433–439. (b) Fusetani, N.
Curr. Org. Chem. 1997, 1, 127–152.
(20) (a) Domling, A.; Ugi, I. Angew. Chem., Int. Ed. Engl. 2000, 39, 3168–
3210. (b) Domling, A. Chem. ReV. 2006, 106, 17–89. (c) Ramon, D. J.; Yus, M.
Angew. Chem., Int. Ed. Engl. 2005, 44, 1602–1634. (d) Nair, V.; Rajesh, C.;
Vinod, A. U.; Bindu, S.; Sreekanth, A. R.; Mathen, J. S.; Balagopal, L. Acc.
Chem. Res. 2003, 36, 899–907.
(30) Golebiowski, A.; Jozwik, J.; Klopfenstein, S. R.; Colson, A.-O.; Grieb,
A. L.; Russell, A. F.; Rastogi, V. L.; Diven, C. F.; Portlock, D. E.; Chen, J. J.
J. Comb. Chem. 2002, 4, 584–590.
(31) Kim, S. W.; Bauer, S. M.; Armstrong, R. W. Tetrahedron Lett. 1998,
39, 6993–6996.
(32) Kim, S. W.; Shin, Y. S.; Ro, S. Bioorg. Med. Chem. Lett. 1998, 8, 1665–
1669.
(21) (a) Ugi, I.; Domling, A.; Werner, B. Houben-Weyl: Synthesis of Peptides
& Peptidomimetics, Multicomponent Reactions, Workbench ed.; Goodman, M.,
Felix, A., Moroder, L., Toniolo, C., Eds.; Thieme: Stuttgart, New York, 2001;
Vol. E22a, pp 878-889. (b) Waki, M.; Meienhofer, J. J. Am. Chem. Soc. 1977,
99, 6075–6082.
(22) (a) Takashi, Y.; Yuichiro, O.; Yoshinori, Y.; Toshifumi, M.; Shigeru,
K. Synthesis 1998, 1998, 991–998. (b) Costa, S. P. G.; Maia, H. L. S.; Pereira-
Lima, S. M. M. A. Org. Biomol. Chem. 2003, 1, 1475–1479. (c) Jiang, W.-Q.;
Costa, S. P. G.; Maia, H. L. S. Org. Biomol. Chem. 2003, 1, 3804–3810.
(23) Hebach, C.; Kazmaier, U. Chem. Commun. 2003, 596–597.
(33) Burger, K.; Mutze, K.; Hollweck, W.; Koksch, B. Tetrahedron 1998,
54, 5915–5928.
(34) Semple, J. E.; Owens, T. D.; Nguyen, K.; Levy, O. E. Org. Lett. 2000,
2, 2769–2772.
(35) (a) Kazmaier, U.; Ackermann, S. Org. Biomol. Chem. 2005, 3, 3184–
3187. (b) Umkehrer, M.; Kolb, J.; Burdack, C.; Hiller, W. Synlett 2005, 2005,
79–82.
(36) Domling, A.; Katrin, I. Synthesis 2005, 2005, 662–667.
(37) Kennedy, A. L.; Fryer, A. M.; Josey, J. A. Org. Lett. 2002, 4, 1167–
1170.
154 J. Org. Chem. Vol. 74, No. 1, 2009