6790
V. Heguaburu et al. / Tetrahedron Letters 49 (2008) 6787–6790
12. Bellomo, A.; Gonzalez, D.; Stefani, H. A. J. Organomet. Chem. 2008, 693, 1136–
1142.
13. Gonzalez, D.; Schapiro, V.; Seoane, G.; Hudlicky, T. Tetrahedron: Asymmetry
1997, 8, 975–977.
14. Matveenko, M.; Banwell, M. G.; Willis, A. C. Tetrahedron 2008, 64, 4817–4826.
15. Bui, V. P.; Nguyen, M.; Hansen, J.; Baker, J.; Hudlicky, T. Can. J. Chem. 2002, 80,
708–713.
16. Schapiro, V.; Cavalli, G.; Seoane, G.; Faccio, R.; Mombrú, A. W. Tetrahedron:
Asymmetry 2002, 13, 2453–2459.
17. Labora, M.; Heguaburu, V.; Pandolfi, E.; Schapiro, V. Tetrahedron: Asymmetry
2008, 19, 893–895.
18. Larhed, M.; Moberg, C.; Hallberg, A. Acc. Chem. Res. 2002, 35, 717–727.
19. Fonseca, G.; Seoane, G. Tetrahedron: Asymmetry 2005, 16, 1393–1402.
20. Brovetto, M.; Schapiro, V.; Cavalli, G.; Padilla, P.; Sierra, A.; Seoane, G.; Suescun,
L.; Mariezcurrena, R. New J. Chem. 1999, 23, 549–556.
21. Hudlicky, T.; Restrepo-Sánchez, N.; Kary, P. D.; Jaramillo-Gómez, L. M.
Carbohydr. Res. 2000, 324, 200–203.
22. Dominguez, B.; Pazos, Y.; De Lera, A. J. Org. Chem. 2000, 65, 5917–5925.
23. Krishnudu, K.; Krishna, P. R.; Mereyala, H. B. Tetrahedron Lett. 1996, 37, 6007–
6010.
microwave heating: To a solution of cis-dihydrodiol derivative (0.37 mmol)
and tetrakis(triphenylphosphine) palladium (0) (63 mg, 0.055 mmol) in
anhydrous THF (2 mL), allyltributyltin was added (0.12 mL, 0.40 mmol). The
mixture was irradiated in a microwave at 90–120 °C and 200 W for 5–10 min
in a sealed tube under a nitrogen atmosphere. Removal of the solvent and
purification by flash chromatography on silica gel (EtOAc/hexanes) gave the
cross-coupling product.
26. Spectral data for selected compounds: 2c: 1H NMR (CDCl3, 400 MHz) d 6.00 (dd,
J1 = 3.5 Hz, J2 = 9.8 Hz, 1H), 5.88 (m, 1H), 5.84 (dd, J1 = 4.4 Hz, J2 = 8.6 Hz, 1H),
5.76 (m, 1H), 5.17 (d, J = 1.7 Hz, 1H), 5.13 (m, 1H), 4.68 (dd, J1 = 3.9 Hz,
J2 = 8.6 Hz, 1H), 4.56 (d, J = 8.6 Hz, 1H), 3.00 (m, 2H), 1.43 (s, 3H), 1.42 (s, 3H)
ppm; Compound 2e: 1H NMR (CDCl3, 400 MHz)
d 6.10 (dt, J1 = 1.6 Hz,
J2 = 5.4 Hz, 1H), 5.94 (d, J = 5.3 Hz, 1H), 5.81 (m, 1H), 5.75 (dd, J1 = 3.0 Hz,
J2 = 10.0 Hz, 1H), 5.61 (m, 1H), 5.54 (d, J = 6.0 Hz, 1H), 5.14 (dd, J1 = 1.6 Hz,
J2 = 8.6 Hz, 1H), 5.10 (d, J = 1.3 Hz, 1H), 2.91 (d, J = 8.0 Hz, 2H), 2.08 (s, 3H), 2.07
(s, 3H) ppm; Compound 2f: 1H NMR (CDCl3, 400 MHz) d 5.84 (m, 1H), 5.62 (d,
J = 4.3 Hz, 1H), 5.16 (dd, J1 = 1.0 Hz, J2 = 6.7 Hz, 1H), 5.11 (d, J = 1.0 Hz, 1H), 4.55
(d, J = 5.9 Hz, 1H), 4.36 (t, J = 6.5 Hz, 1H), 4.30 (m, 1H), 3.93 (dd, J1 = 3.7 Hz,
J2 = 6.8 Hz, 1H), 2.97 (dd, J1 = 6.4 Hz, J2 = 16 Hz, 1H), 2.90 (dd, J1 = 7.5 Hz,
J2 = 16 Hz, 1H), 2.71 (br s, 2H), 1.44 (s, 3H), 1.40 (s, 3H) ppm; Compound 2h: 1
H
24. Grushin, V. V. Organometallics 2000, 19, 1888–1900.
25. The cis-dihydrodiol metabolites 1a–b were obtained using P. putida F39/D
under the biotransformation conditions previously reported.2 Compounds
1c–k were prepared according to previous reports.19–21 Conventional heating
reactions were performed according to Boyd’s protocol.5 Microwave reactions
NMR (CDCl3, 400 MHz) d 5.85 (m, 1H), 5.59 (s, 1H), 5.15 (dd, J1 = 1.4 Hz,
J2 = 4.9 Hz, 1H), 5.12 (s, 1H), 4.53 (d, J = 6.4 Hz, 1H), 4.08 (m, 2H) 3.60 (t,
J = 8.4 Hz, 1H), 2.96 (dd, J1 = 6.2 Hz, J2 = 16 Hz, 1H), 2.90 (dd, J1 = 7.6 Hz,
J2 = 16 Hz, 1H), 1.52 (s, 3H), 1.41 (s, 3H) ppm; Compound 2i: 1H NMR (CDCl3,
400 MHz) d 5.80 (m, 1H), 5.50 (d, J = 1.4 Hz, 1H), 5.14 (m, 1H), 5.10 (s, 1H), 4.53
(m, 2H), 4.39 (m, 1H), 3.60 (ddd, J1 = 1.2 Hz, J2 = 2.5 Hz, J2 = 7.7 Hz, 1H), 2.90 (m,
1H), 2.74 (d, J = 7.1 Hz, 1H), 2.55 (d, J = 4.4 Hz, 1H), 1.43 (s, 3H), 1.36 (s, 3H)
ppm.
were performed in
a commercially available monomode reactor (CEM
Explorer). Reactions were carried out in 10 mL Pyrex vials sealed with septa
and using magnetic stirring. General procedure for Stille reaction using