Y. Li et al. / Journal of Photochemistry and Photobiology A: Chemistry 231 (2012) 51–59
59
that changes in medium environment of the compounds may sig-
nificantly changes in the fluorescence quantum yields and other
photophysical properties of the molecules.
[17] C.J. Brabec, C. Winder, N.S. Sariciftci, J.C. Hummelen, A. Dhanabalan, P.A. van Hal,
R.A. Janssen, A low-bandgap semiconducting polymer for photovoltaic devices
and infrared emitting diodes, Adv. Funct. Mater. 12 (2002) 709–712.
[18] F.L. Zhang, A. Gadisa, O. Inganas, M. Svensson, M.R. Andersson, Influence of
buffer layers on the performance of polymer solar cells, Appl. Phys. Lett. 84
(2004) 3906–3908.
[19] M. Velusamy, K.R.J. Thomas, J.T. Lin, Y.-C. Hsu, K.-C. Ho, Organic dyes incorpo-
rating low-band-gap chromophores for dye-sensitized solar cells, Org. Lett. 7
(2005) 1899–1902.
[20] D. Deng, Y. Yang, J. Zhang, C. He, M. Zhang, Z.-G. Zhang, Z. Zhang, Y. Li,
Triphenylamine-containing linear D-A-D molecules with benzothiadiazole as
acceptor unit for bulk-heterojunction organic solar cells, Organic Electronics
12 (2011) 614–622.
[21] J.-Z. Cheng, C.-C. Lin, P.-T. Chou, A. Chaskar, K.-T. Wong, Fluorene as the (-
spacer for new two-photon absorption chromophores, Tetrahedron 67 (2011)
734–739.
Acknowledgments
This work was supported by NSFC, China (No. 20872092). We
also thank the WSU Nuclear Magnetic Resonance Center for pro-
viding the NMR equipment to carry out the characterization of
compounds. The WSU NMR Center equipment was supported by
NIH grants RR0631401 and RR12948, NSF grants CHE-9115282 and
DBI-9604689 and the Murdock Charitable Trust.
[22] A Guide to Recording Fluorescence Quantum Yields, Jobin Yvon Ltd.
[23] Gaussian 09, Revision A.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuse-
ria, M. A. Robb, J. R. Cheeseman, G., Scalmani, V., Barone, B., Mennucci, G. A.
Petersson, H., Nakatsuji, M., Caricato, X., Li, H. P. Hratchian, A. F. Izmaylov, J.,
Bloino, G., Zheng, J. L. Sonnenberg, M., Hada, M., Ehara, K., Toyota, R., Fukuda, J.,
Hasegawa, M., Ishida, T., Nakajima, Y., Honda, O., Kitao, H., Nakai, T., Vreven, J.
A. Montgomery, Jr., J. E. Peralta, F., Ogliaro, M., Bearpark, J. J. Heyd, E., Brothers,
K. N. Kudin, V. N. Staroverov, R., Kobayashi, J., Normand, K., Raghavachari, A.,
Rendell, J. C. Burant, S. S. Iyengar, J., Tomasi, M., Cossi, N., Rega, J. M. Millam, M.,
Klene, J. E. Knox, J. B. Cross, V., Bakken, C., Adamo, J., Jaramillo, R., Gomperts,
R. E. Stratmann, O., Yazyev, A. J. Austin, R., Cammi, C., Pomelli, J. W. Ochter-
ski, R. L. Martin, K., Morokuma, V. G. Zakrzewski, G. A. Voth, P., Salvador, J. J.
Dannenberg, S., Dapprich, A. D. Daniels, O., Farkas, J. B. Foresman, J. V. Ortiz, J.
Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2009.
[24] S.-I. Kato, T. Matsumoto, M. Shigeiwa, H. Gorohmaru, S. Maeda, T. Ishi-
i, S. Mataka, Novel 2,1,3-benzothiadiazole-based red-fluorescent dyes with
enhanced two-photon absorption cross-sections, Chem. Eur. J. 12 (2006)
2303–2307.
Appendix A. Supplementary data
Supplementary data associated with this article can be found, in
References
[1] S.R. Forrest, M.E. Thompson, Introduction: organic electronics and optoelec-
tronics, Chem. Rev. 107 (2007) 923–925.
[2] A.C. Grimsdale, K.L. Chan, R.E. Martin, P.G. Jokisz, A.B. Holmes, Synthesis of light-
emitting conjugated polymers for applications in electroluminescent devices,
Chem. Rev. 109 (2009) 897–1091.
[3] Y.J. Cheng, S.H. Yang, C.S. Hsu, Synthesis of conjugated polymers for organic
solar cell applications, Chem. Rev. 109 (2009) 5868–5923.
[4] P. Heremans, D. Cheyns, B.P. Rand, Strategies for increasing the efficiency of
heterojunction organic solar cells: material selection and device architecture,
Acc. Chem. Res. 42 (2009) 1740–1747.
[5] N. Martin, L. Sanchez, M.A. Herranz, B. Illescas, D.M. Guldi, Electronic communi-
cation in tetrathiafulvalene (TTF)/C60 systems: toward molecular solar energy
conversion materials? Acc. Chem. Res. 40 (2007) 1015–1024.
[6] S.W. Thomas III, G.D. Joly, T.M. Swager, Chemical sensors based on ampli-
fying fluorescent conjugated polymers, Chem. Rev. 107 (2007) 1339–
1386.
[7] E. Espi, A. Salmeron, A. Fontecha, Y. Garcia, A.I. Real, Plastic films for agricultural
applications, J. Plastic Film & Sheeting 22 (2006) 85–102.
[8] E. Klampaftis, D. Ross, K.R. Mclntosh, B.S. Richards, Enhancing the performance
of solar cells via luminescent down-shifting of the incident spectrum: a review,
Sol. Energy Mater. Sol. Cells 93 (2009) 1182–1194.
[25] Patent, WO01/49768.
[26] J.-J. Kim, H. Choi, J.-W. Lee, M.-S. Kang, K. Song, S.O. Kang, J. Ko, A polymer gel
electrolyte to achieve ≥6% power conversion efficiency with a novel organic
dye incorporating a low-band-gap chromophore, J. Mater. Chem. 18 (2008)
5223–5229.
[27] C.S. Li, Y.H. Tsai, W.C. Lee, W.J. Kuo, Synthesis and photophysical properties of
pyrrole/polycyclic aromatic units hybrid fluorophores, J. Org. Chem. 75 (2010)
4004–4013.
[28] K. Ohta, Y. Chiba, T. Ogawa, Y. Endo, Promising core structure for nuclear recep-
tor ligands: design and synthesis of novel estrogen receptor ligands based on
diphenylamine skeleton, Bioorg. Med. Chem. Lett. 18 (2008) 5050–5053.
[29] H. Konno, S. Aimoto, S.O. Smith, K. Nosaka, K. Akaji, Synthesis of [19,35, 36-
(13)C(3)]-labeled TAK779 as a molecular probe, Bioorg. Med. Chem. 17 (2009)
5769–5774.
[30] A. Pron, G. Zhou, H. Norouzi-Arasi, M. Baumgarten, K. Mullen, Controlling the
charge transfer in phenylene-bridged borylene-amine pi-conjugated systems,
Org. Lett. 11 (2009) 3550–3553.
[31] J. Svoboda, P. Stenclova, F. Uhlík, J. Zedník, J. Vohlídal, Synthesis and photophys-
ical properties of ␣, (-bis(terpyridine)oligothiophenes, Tetrahedron 67 (2011)
75–79.
[9] B.S. Richards, K.R. Mclntosh, Overcoming the poor short wavelength spectral
responses of CdS/CdTe photovoltaic modules via luminescence down-shifting:
ray-tracing simulations, Prog. Photovoltaics 15 (2007) 27–34.
[10] X. Zhang, Y. Xiao, X. Qian, A ratiometric fluorescent probe based on FRET
for imaging Hg2+ ions in living cells, Angew. Chem. Int. Ed. 47 (2008)
8025–8029.
[32] I.B. Berlman, Empirical correlation between nuclear conformation and certain
fluorescence and absorption characteristics of aromatic compounds, J. Phys.
Chem. 74 (1970) 3085–3093.
[11] R.E. Martin, F. Diederich, Linear monodisperse (-conjugated oligomers: model
compounds for polymers and more, Angew. Chem. Int. Ed. 38 (1999)
1350–1377.
[33] N.I. Nijegorodov, W.S. Downey, The influence of planarity and rigidity on the
absorption and fluorescence parameters and intersystem crossing rate con-
stant in aromatic molecules, J. Phys. Chem. 98 (1994) 5639–5643.
[34] H.L. Zhang, G. Zhao, Y. Ding, B. Wu, An efficient and enantioselective approach
to the azaspirocyclic core of alkaloids: formal synthesis of halichlorine and
pinnaic acid, J. Org. Chem. 70 (2005) 4954–4961.
[12] K.C. Moss, K.N. Bourdakos, V. Bhalla, K.T. Kamtekar, M.R. Bryce, M.A. Fox, H.L.
Vaughan, F.B. Dias, A.P. Monkman, Tuning the intramolecular charge transfer
emission from deep blue to green in ambipolar systems based on dibenzothio-
phene S,S-dioxide by manipulation of conjugation and strength of the electron
donor units, J. Org. Chem. 75 (2010) 6771–6781.
[13] J.L. Segura, N. Martin, Functionalized oligoarylenes as building blocks for new
organic materials, J. Mater. Chem. 10 (2000) 2403–2435.
[14] D.P. Hagberg, T. Marinado, K.M. Karlsson, K. Nonomura, P. Qin, G. Boschloo,
T. Brinck, A. Hagfeldt, L. Sun, Tuning the HOMO and LUMO energy levels of
organic chromophores for dye sensitized solar cells, J. Org. Chem. 72 (2007)
9550–9556.
[15] X. Tang, W. Liu, J. Wu, C.S. Lee, J. You, P. Wang, Synthesis, crystal structures, and
photophysical properties of triphenylamine-based multicyano derivatives, J.
Org. Chem. 75 (2010) 7273–7278.
[16] W. Lin, L. Yuan, Z. Cao, Y. Feng, J. Song, Through-bond energy transfer cas-
settes with minimal spectral overlap between the donor emission and acceptor
absorption: coumarin-rhodamine dyads with large pseudo-Stokes shifts and
emission shifts, Angew. Chem. Int. Ed. 49 (2010) 375–379.
[35] J.R. Lakowicz, Principles of Fluorescence Spectroscopy, 3rd edition, Springer
Science+Business Media, NY, USA, 2006.
[36] F.B. Dias, S. Pollock, G. Hedley, L.O. Palsson, A. Monkman, I.I. Perepichka, I.F.
Perepichka, M. Tavasli, M.R. Bryce, Intramolecular charge transfer assisted by
conformational changes in the excited state of fluorene-dibenzothiophene-S,S-
dioxide co-oligomers, J. Phys. Chem. B 110 (2006) 19329–19339.
[37] Z.R. Grabowski, K. Rotkiewicz, W. Rettig, Structural changes accompanying
intramolecular electron transfer: focus on twisted intramolecular charge-
transfer states and structures, Chem. Rev. 103 (2003) 3899–4032.
[38] J. Herbich, A. Kapturkiewicz, Electronic structure and molecular conforma-
tion in the excited charge transfer singlet states of 9-acridyl and other aryl
derivatives of aromatic amines, J. Am. Chem. Soc. 120 (1998) 1014–1029.