C O M M U N I C A T I O N S
Scheme 2. Mechanistic Proposal for the Dual Ring Expansions
fined alkylidene cyclobutanones, we probed the stereoselectivity
of the analogous process employing electron-“neutral” alkyl sub-
stituents at the alkyne.
When we exposed the hexyl-substituted alkynylcyclopropanol 10a
to our reaction conditions (eq 1), the anticipated cyclobutanone 11a
did not form but rather the unexpected ꢀ-substituted cyclopentenone
12a.
Impressed by this complete shift in reactivity, we set out to examine
the generality of this observation and briefly examined the alkyl-
substituted substrates shown in Table 3.
Ru to selectively mediate either of the two pathways depending on
the electronic properties of the substrate bears testament to the versatile
nature of this metal in catalysis. In particular, the ability to access
functionalized ꢀ-substituted cyclopentenones through a direct two-
carbon homologation is appealing. Moreover, the exclusive obtention
of the (Z)-alkylidene cyclobutanone isomers through the cyclopropanol/
cyclobutanone expansion manifold is unprecedented and serves to
further distinguish Ru from other, alkynophilic transition metals.
Interestingly, substrates comprising benzyl (entry 2), cycloalkyl
(entry 3), or remote alkoxy (entries 4-5) and halide (entry 6)
substituents underwent completely selective ring enlargement to the
corresponding cyclopentenones. In all cases 12 was obtained exclu-
sively, with only trace amounts of the analogous cyclobutanones
1
detectable by H NMR of the crude mixtures. To the best of our
knowledge, only one example of a metal-catalyzed direct cyclopro-
panol-cyclopentenone rearrangement was reported prior to our
findings.5a,b
Acknowledgment. We thank the NSF and NIH (NIH-13598) for
generous support of our programs. N.M. is grateful to the Fundac¸a˜o
para a Cieˆncia e Tecnologia (FCT) for a postdoctoral fellowship. We
thank Johnson-Matthey for a generous gift of Ru salts.
Our mechanistic hypothesis to accommodate these results is shown
in Scheme 2.7 We believe that, in the case of silyl and electron-
withdrawing substituents, the electronic properties of the system are
exacerbated upon coordination to the metal catalyst. Thus, the ability
of Si to stabilize a developing ꢀ-positive charge (Scheme 2, R ) SiR3)
and the propensity of ynones and propiolate derivatives to undergo
Michael addition (Scheme 2, R ) COR) probably favor a rapid,
substrate-controlled 1,2-alkyl shift. Note that the observed (Z)-
selectivity in these cyclopropanol/cyclobutanone rearrangements sug-
gests that internal chelation of the putative vinylmetal intermediate by
the cyclobutanone carbonyl is not operative.
Yet, the electron-“neutral” substrates studied (Table 3) should be
more prone to metal insertion into a C-C bond of the cyclopropane
moiety (Scheme 2, R ) alkyl). Such a process would provide
ruthenacyclohexenone 13, from which reductive elimination accounts
for the observed products. The fact that only trace amounts of the
analogous cyclobutanones are obtained implies that a net 1,2-alkyl shift
is much less favored in these systems.
Supporting Information Available: Experimental procedures and
characterization data for all new compounds. This material is available
References
(1) See: (a) Trost, B. M. In Small Ring Compounds in Organic Synthesis; de
Meijere, A., Ed.; Springer-Verlag: Berlin, 1986; pp 3-82. (b) Wong,
H. N. C.; Lau, K. L.; Tam, K. F. In Small Ring Compounds in Organic
Synthesis; de Meijere, A., Ed.; Springer-Verlag: Berlin, 1986; pp 83-157.
(2) (a) Gutsche, C. D.; Redmore, D. Carbocyclic Ring Expansion Reactions;
Academic Press: New York, 1968. (b) Hudlicky, T.; Becker, D. A.; Fan,
R. L.; Kozhushkov, S. In Carbocyclic Three- and Four-membered Ring
Compounds; de Meijere, A., Ed.; Houben-Wey Methods of Organic
Chemistry; Thieme: Stuttgart, 1997; Vol. El7c, p 2538. (c) Krief, A. In Small
Ring Compounds in Organic Synthesis II; de Meijere, A., Ed.; Springer-
Verlag: Berlin, 1987; pp 1-76.
(3) (a) Iwasawa, N.; Narasaka, K. Top. Curr. Chem. 2000, 70–88. (b) Yoshida,
M. Yakugaku Zasshi 2004, 124, 425–35. (c) Muzart, J. Tetrahedron 2005,
61, 9423–9463. (d) Muzart, J. Tetrahedron 2008, 64, 5815–5849.
(4) For leading references, see:(a) Snider, B. B.; Vo, N. H.; Foxman, B. M. J.
Org. Chem. 1993, 58, 7228–37. (b) Kim, S.; Uh, K. Tetrahedron Lett. 1996,
37, 3865–3866. (c) Nemoto, H.; Miyata, J.; Yoshida, M.; Raku, N.;
Fukumoto, K. J. Org. Chem. 1997, 62, 6450–6451. (d) Trost, B. M.;
Yasukata, T. J. Am. Chem. Soc. 2001, 123, 7162–7163. (e) Yoshida, M.;
Sugimoto, K.; Ihara, M. Org. Lett. 2004, 6, 1979–82. (f) Owada, Y.; Matsuo,
T.; Iwasawa, N. Tetrahedron 1997, 53, 11069–11086. (g) Nemoto, H.;
Miyata, J.; Ihara, M. Tetrahedron Lett. 1999, 40, 1933–1936. (h) Yoshida,
M.; Sugimoto, K.; Ihara, M. Tetrahedron 2002, 58, 7839–7846. (i) Nagao,
Y.; Ueki, A.; Asano, K.; Tanaka, S.; Sano, S.; Shiro, M. Org. Lett. 2002, 4,
455–7. (j) Trost, B. M.; Xie, J. J. Am. Chem. Soc. 2006, 128, 6044–5. (k)
Trost, B. M.; Xie, J. J. Am. Chem. Soc. 2008, 130, 6231–42.
In summary, we have developed a novel Ru-catalyzed ring
expansion of alkynylcyclopropanols. This atom-economical8 reaction
appears to proceed by two different pathways. The unique ability of
Table 3. Ru-Catalyzed Ring Expansion of Alkyl-Substituted
Alkynylcyclopropanols to Cyclopentenones
(5) Co:(a) Iwasawa, N. Chem. Lett. 1992, 47, 3–476. (b) Iwasawa, N.; Matsuo,
T.; Iwamoto, M.; Ikeno, T. J. Am. Chem. Soc. 1998, 120, 3903–3914. Au:
(c) Markham, J. P.; Staben, S. T.; Toste, F. D. J. Am. Chem. Soc. 2005,
127, 9708–9709. (d) Yeom, H.; Yoon, S.; Shin, S. Tetrahedron Lett. 2007,
48, 4817–4820. (e) Sordo, L. T.; Ardura, D Eur. J. Org. Chem. 2008, 300,
4–3013. Pd: (f) Larock, R. C.; Reddy, C. K. Org. Lett. 2000, 2, 3325–3327.
(g) Larock, R. C.; Reddy, C. K. J. Org. Chem. 2002, 67, 2027–2033. (h)
Yoshida, M.; Komatsuzaki, Y.; Nemoto, H.; Ihara, M. Org. Biomol. Chem.
2004, 2, 3099–107. For a related reaction, see: (i) Sugimoto, K.; Yoshida,
M.; Ihara, M. Synlett 2006, 1923–1927.
entry
R
product
time (h)
yielda
1
2
3
4
5
6
n-C6H13 10a
Bn 10b
12a
12b
12c
12d
12e
12f
4
6
4
2
2
2
78%
81%
88%
76%
68%
74%
(6) (a) Trost, B. M.; Weiss, A. H. Angew. Chem., Int. Ed. 2007, 46, 7664–
7666, and references therein. (b) Trost, B. M.; Ball, Z. T.; Laemmerhold,
K. M. J. Am. Chem. Soc. 2005, 127, 10028–10038.
Cy 10c
(7) (a) Trost, B. M.; Livingston, R. C. J. Am. Chem. Soc. 1995, 117, 9586–
9587. (b) Trost, B. M.; Livingston, R. C. J. Am. Chem. Soc. 2008, 130,
11970–11978.
(CH2)3OBn 10d
(CH2)4OBn 10e
(CH2)3Cl 10f
(8) Trost, B. M. Science 1991, 254, 1471–1477.
a Yields refer to pure, isolated products.
JA807894T
9
J. AM. CHEM. SOC. VOL. 130, NO. 51, 2008 17259