ORGANIC
LETTERS
2009
Vol. 11, No. 1
9-12
Stereoselective Synthesis of
2-Deoxy-ꢀ-glycosides Using Anomeric
O-Alkylation/Arylation
William J. Morris and Matthew D. Shair*
Department of Chemistry and Chemical Biology, HarVard UniVersity,
12 Oxford Street, Cambridge, Massachusetts 02138
Received September 19, 2008
ABSTRACT
Anomeric O-alkylation/arylation is applied to the synthesis of 2-deoxy-ꢀ-glycosides. Treatment of lactols with NaH in dioxane followed by the
addition of electrophiles leads to the formation of 2-deoxy-ꢀ-glycosides in high yield and high selectivity. The high ꢀ-selectivity observed here
demonstrates a powerful stereoelectronic effect for the stereoselective formation of acetals under kinetic control.
2-Deoxy-ꢀ-glycosides are present in biologically active
natural products such as the lomaiviticins, olivomycin A,
OSW-1, and durhamycin. The stereoselective preparation of
2-deoxy-ꢀ-glycosides is difficult1 because substituents at C2
often serve as directing groups during the glycosylation
event. The synthesis challenge posed by 2-deoxy-ꢀ-glyco-
sides coupled with their presence in nature has inspired a
variety of approaches aimed at accessing these important
glycosides. The most common methods involve the use of a
heteroatom substituent at C2 of the glycosyl donor followed
by its reductive removal after glycosylation.2 Other methods
include the use of R-glycosyl phosphites,3 displacement of
R-glycosyl halides,4 palladium-catalyzed glycosylation reac-
tions,5 utilization of alkoxy-substituted anomeric radicals,6
and the use of glycosyl imidates as glycosyl donors under
oxidative conditions.7
We became interested in the synthesis of 2-deoxy-ꢀ-
glycosides because they are present in the lomaiviticins,
molecules we are targeting for synthesis (Figure 1). In
particular, our recent synthesis of the central ring system of
the lomaiviticins involves incorporation of the C4 and C4′
(1) Toshima, K.; Tatsuta, K. Chem. ReV. 1993, 93, 1503.
(2) (a) Roush, W. R.; Bennett, C. E. J. Am. Chem. Soc. 1999, 121, 3541.
(b) Blanchard, N.; Roush, W. R. Org. Lett. 2003, 5, 81. (c) Thiem, J.;
Gerken, M. J. Org. Chem. 1985, 50, 954. (d) Ito, Y.; Ogawa, T. Tetrahedron
Lett. 1987, 28, 2723. (e) Grewal, G.; Kaila, N.; Franck, R. W. J. Org. Chem.
1992, 57, 2084. (f) Preuss, R.; Schmidt, R. R. Synthesis 1988, 694. (g)
Franck, R. W.; Marzabadi, C. H. J. Org. Chem. 1998, 63, 2197. (h)
Nicolaou, K. C.; Ladduwahetty, T.; Randall, J. L.; Chucholowski, A. J. Am.
Chem. Soc. 1986, 108, 2466. (i) Perez, M.; Beau, J.-M. Tetrahedron Lett.
1989, 30, 75. (j) Gervay, J.; Danishefsky, S. J. Org. Chem. 1991, 56, 5448.
(k) Tavecchia, P.; Trumtel, M.; Veyrieres, A.; Sinay, P. Tetrahedron Lett.
1989, 30, 2533. (l) Wiesner, K.; Tsai, T. Y. R.; Jin, H. HelV. Chim. Acta
1985, 68, 300.
(3) (a) Pongdee, R.; Wu, B.; Sulikowski, G. A. Org. Lett. 2001, 3, 3523.
(b) Hashimoto, S.; Yanagiya, Y.; Honda, T.; Ikegami, S. Chem. Lett. 1992,
1511.
(4) (a) Binkley, R. W.; Koholic, D. J. J. Org. Chem. 1989, 54, 3577.
(b) Toshima, K.; Misawa, M.; Ohta, K.; Tatsuta, K.; Kinoshita, M.
Tetrahedron Lett. 1989, 30, 6417.
(5) Zhou, M.; O’Doherty, G. A. J. Org. Chem. 2007, 72, 2485.
(6) (a) Crich, D.; Ritchie, T. J. J. Chem. Soc., Perkin Trans. 1 1990,
945. (b) Kahne, D.; Yang, D.; Lim, J. J.; Miller, R.; Paguaga, E. J. Am.
Chem. Soc. 1988, 110, 8716.
(7) Tanaka, H.; Yoshizawa, A.; Takahashi, T. Angew. Chem., Int. Ed.
2007, 46, 2505.
10.1021/ol8022006 CCC: $40.75
Published on Web 12/05/2008
2009 American Chemical Society