ACS Catalysis
Letter
(12) Li, G.-Q.; Yamamoto, Y.; Miyaura, N. Synthesis of Tetra-
Ortho-Substituted Biaryls Using Aryltriolborates. Synlett 2011, 1769−
1773.
(d) Gurung, S. K.; Thapa, S.; Kafle, A.; Dickie, D. A.; Giri, R. Copper-
Catalyzed Suzuki−Miyaura Coupling of Arylboronate Esters: Trans-
metalation with (PN)CuF and Identifiation of Intermediates. Org.
Lett. 2014, 16, 1264−1267. (e) Zhou, J.; Berthel, J. H. J.; Kuntze-
fechner, M. W.; Friedrich, A.; Marder, T. B.; Radius, U. NHC Nickel-
Catalyzed Suzuki−Miyaura Cross-Coupling Reactions of Aryl
Boronate Esters with Perfluorobenzenes. J. Org. Chem. 2016, 81,
5789−5794. (f) Bulfield, D.; Huber, S. M. Synthesis of Polyflouri-
nated Biphenyls; Pushing the Boundaries of Suzuki−Miyaura Cross
Coupling with Electron-Poor Substrates. J. Org. Chem. 2017, 82,
13188−13203. (g) Cao, Z.; Xie, S.; Fang, H.; Shi, Z. Ni-Catalyzed
Cross-Coupling of Dimethyl Aryl Amines with Arylboronic Esters
under Reductive Conditions. J. Am. Chem. Soc. 2018, 140, 13575−
13579. (h) Semba, K.; Ohta, N.; Nakao, Y. Carboallylation of
Elecron-Deficient Alkenes with Organoboron Compounds and Allylic
Carbonates by Cooperative Palladium/Copper Catalysis. Org. Lett.
2019, 21, 4407−4410.
(13) Lennox, A. J. J.; Lloyd-Jones, G. C. The Slow-Release Strategy
in Suzuki−Miyaura Coupling. Isr. J. Chem. 2010, 50, 664−674.
(14) Cox, P. A.; Reid, M.; Leach, A. G.; Campbell, A. D.; King, E. J.;
Lloyd-Jones, G. C. Base-Catalyzed Aryl-B(OH)2 Protodeboronation
Revisited: From Concerted Proton Transfer to Liberation of a
Transient Aryl Anion. J. Am. Chem. Soc. 2017, 139, 13156−13165.
(15) Cox, P. A.; Leach, A. G.; Campbell, A. D.; Lloyd-Jones, G. C.
Protodeboronation of Heteroaromatic, Vinyl, and Cyclopropyl
Boronic Acids: pH−Rate Profiles, Autocatalysis, and Disproportiona-
tion. J. Am. Chem. Soc. 2016, 138, 9145−9157.
(16) Molander, G. A.; Rivero, M. R. Suzuki Cross-Coupling
Reactions of Potassium Alkenyltrifluoroborates. Org. Lett. 2002, 4,
107−109.
(17) Molander, G. A.; Canturk, B.; Kennedy, L. E. Scope of the
Suzuki−Miyaura Cross-Coupling Reactions of Potassium Hetero-
aryltrifluoroborates. J. Org. Chem. 2009, 74, 973−980.
(28) Denmark, S. E.; Regens, C. S. Organosilanols and Their Salts:
Practical Alternatives to Boron- and Tin-Based Methods. Acc. Chem.
Res. 2008, 41, 1486−1499.
(18) Molander, G. A.; Ellis, N. Organotrifluoroborates: Protected
Boronic Acids That Expand the Versatility of the Suzuki Coupling
Reaction. Acc. Chem. Res. 2007, 40, 275−286.
(29) Denmark, S. E.; Liu, J. H.-C. Silicon-Based Cross-Coupling
Reactions in the Total Synthesis of Natural Products. Angew. Chem.,
Int. Ed. 2010, 49, 2978−2986.
(30) Chang, W.-t. T.; Smith, R. C.; Regens, C. S.; Bailey, A. D.;
Werner, N. S.; Denmark, S. E. Cross-Coupling with Organosilicon
Compounds. Org. React. 2011, 75, 213−745.
(19) Knapp, D. M.; Gillis, E. P.; Burke, M. D. A General Solution for
Unstable Boronic Acids: Slow-Release Cross-Coupling from Air-
Stable MIDA Boronates. J. Am. Chem. Soc. 2009, 131, 6961−6963.
(20) Li, J.; Grillo, A. S.; Burke, M. D. From Synthesis to Function via
Iterative Assembly of N-Methyliminodiacetic Acid Boronate Building
Blocks. Acc. Chem. Res. 2015, 48, 2297−2307.
(31) Denmark, S. E.; Sweis, R. F. Cross-Coupling Reactions of
Organosilicon Compounds. In Metal-Catalyzed Cross-Coupling Re-
actions and More; deMeijere, A., Brase, S., Oestreich, M., Eds.; Wiley-
VCH: Weinheim, Germany, 2014; pp 475−532.
(21) Yamamoto, Y.; Takizawa, M.; Yu, X.; Miyaura, N. Cyclic
Triolborates: Air- and Water-Stable Ate Complexes of Organoboronic
Acids. Angew. Chem., Int. Ed. 2008, 47, 928−931.
(22) Deng, J. Z.; Paone, D. V.; Ginnetti, A. T.; Kurihara, H.; Dreher,
S. D.; Weissman, S. A.; Stauffer, S. R.; Burgey, S. Copper-Facilitated
Suzuki Reactions: Application to 2-Heterocyclic Boronates. Org. Lett.
2009, 11, 345−347.
(32) Denmark, S. E.; Ambrosi, A. Why You Really Should Consider
Using Palladium-Catalyzed Cross-Coupling of Silanols and Silano-
lates. Org. Process Res. Dev. 2015, 19, 982−994.
́
́
̌
(33) Burglova, K.; Hlavac, J. Application of Trimethylsilanolate
̈
́
(23) Cammidge, A. N.; Crepy, K. V. L. Application of the Suzuki
Alkali Salts in Organic Synthesis. Synthesis 2018, 50, 1199−1208.
(34) Other candidates such as dialkyl phosphates, potassium and
sodium alkoxides, and tetraalkylammonium hydroxides, fluorides, and
carboxylates were either ineffective or impractical.
Reaction as the Key Step in the Synthesis of a Novel Atropisomeric
Biphenyl Derivative for Use as a Liquid Crystal Dopant. J. Org. Chem.
2003, 68, 6832−6835.
(24) Altenhoff, G.; Goddard, R.; Lehmann, C. W.; Glorius, F.
Sterically Demanding, Bioxazoline-Derived N-Heterocyclic Carbene
Ligands with Restricted Flexibility for Catalysis. J. Am. Chem. Soc.
2004, 126, 15195−15201.
(25) Under specific circumstances, it is possible for highly electron
deficient boron reagents to protodeboronate by loss of an aryl anion,
see ref 15. This type of decomposition would not be mitigated by
anhydrous conditions..
(35) The discrepancy between Tables 1 and 2 occurs because
samples of TMSOK obtained from Oakwood were contaminated with
significant quantities of KOH. Purity was assessed by filtration of 10
mL of a 1.0 M solution of Oakwood TMSOK, see the Supporting
Information. Fortunately, TMSOK from Gelest gave only mildly
turbid solutions in THF at 1.0 M that became transparent after simple
filtration. To assure reproducibility, filtered solutions of Gelest
TMSOK were used in the remainder of this study.
(26) (a) Thomas, A. A.; Denmark, S. E. Pre-transmetalation
Intermediates in the Suzuki−Miyaura Reaction Revealed − the
Missing Link. Science 2016, 352, 329−332. (b) Thomas, A. A.; Wang,
H.; Zahrt, A. F.; Denmark, S. E. Structural, Kinetic, and Computa-
tional Characterization of the Elusive Arylpalladium(II)boronate
Complexes in the Suzuki−Miyaura reaction. J. Am. Chem. Soc. 2017,
139, 3805−3821. (c) Thomas, A. A.; Zahrt, A. F.; Delaney, C. P.;
Denmark, S. E. Elucidating the Role of the Boronic Esters in the
Suzuki−Miyaura Reaction: Structural, Kinetic, and Computational
Investigations. J. Am. Chem. Soc. 2018, 140, 4401−4416.
(27) For other comparitive studies of neopentyl boronic esters, see
(a) Kitamura, Y.; Sakurai, A.; Udzu, T.; Maegawa, T.; Monguchi, Y.;
Sajiki, H. Heterogeneous Pd/C-Catalyzed Ligand-Free Suzuki−
Miyaura Coupling Reaction Using Aryl Boronic Esters. Tetrahedron
2007, 63, 10596−10602. (b) Myslinska, M.; Heise, G. L.; Walsh, D. J.
Practical and Efficient Applications of Novel Dioxaborolanes and
Dioxaborinanes in the Synthesis of Corresponding Boronates and
Their Use in the Palladium-Catalyzed Cross Coupling Reactions.
Tetrahedron Lett. 2012, 53, 2937−2941. (c) Zhang, N.; Hoffman, D.
J.; Gutsche, N.; Gupta, J.; Percec, V. Comparison of Arylboron-Based
Nucleophiles in Ni-Catalyzed Suzuki−Miyaura Cross-Coupling with
Aryl Mesylates and Sulfamates. J. Org. Chem. 2012, 77, 5956−5964.
(36) Neopentyl glycol (Alfa Aesar): $51/2.5 kg. Pinacol
(ABAChemScene): $141/1 kg. cis-tetrahydrofuran-2,3-diol: 1 step
from erythritol. Erythritol: (Oakwood Chemical) $60/1 kg. cis-
cyclopentane-1,2-diol: derived from dihydroxylation of cyclopentene,
comparatively expensive.
(37) Denmark, S. E.; Williams, B. J.; Eklov, B. M.; Pham, S. M.;
Beutner, G. L. Design, Validation, and Implementation of a Rapid-
Injection NMR System. J. Org. Chem. 2010, 75, 5558−5572.
(38) Given our hypothesis that the reaction is highly sensitive to
base loadings > 1.0 equiv with respect to boron reagent, using 1.0
equiv of base initially could lead to irreproducibility associated with
weighing errors.
(39) Paunescu, E.; Matuszak, N.; Melnyk, P. Suzuki−Miyaura Cross-
Coupling Reaction as the Key Step for the Synthesis of Some New 4′-
Aryl and Alkyl Substituted Analogues of Amodiaquine and
Amopyroquine. Tetrahedron 2007, 63, 12791−12810.
̈
(40) Landa, A.; Minkkila, A.; Blay, G.; Jørgensen, K. A.
Bis(oxazoline) Lewis Acid Catalyzed Aldol Reactions of Pyridine N-
Oxide AldehydesSynthesis of Optically Active 2-(1-Hydroxyalkyl)-
pyridine Derivatives: Development, Scope, and Total Synthesis of an
Indolizine Alkaloid. Chem. - Eur. J. 2006, 12, 3472−3483.
79
ACS Catal. 2020, 10, 73−80