DMSO (0.02 mL, 0.24 mmol, 50 equiv. related to catalyst)
was then added and the solution was stirred for an additional
12 hours. After concentration in vacuo, the residue was purified
by flash chromatography on silica gel (CH2Cl2–AcOEt, 100 :
0 → 98 : 2) to produce the compound 15a (0.086 g, 88% yield) as
7 C. Alcaraz, M. Dolores Fernandez, M. Pilar de Frutos, J. L. Marco, M.
Bernabe´, C. Foces-Foces and F. H. Cano, Tetrahedron, 1994, 50, 12443.
8 M. Oba, T. Terauchi, Y. Owari, Y. Imai, I. Motoyama, and K.
Nishiyama, J. Chem. Soc., Perkin Trans. 1, 1998, 1275.
9 C. Gallina and A. Liberatori, Tetrahedron, 1974, 30, 667.
10 K. Wimalasena and M. P. D. Mahindaratne, J. Org. Chem., 1994, 59,
3427.
11 P. Wipf and J.-L. Methot, Org. Lett., 2001, 3, 1261.
12 J. D. White and S. C. Jeffrey, J. Org. Chem., 1996, 61, 2600.
13 J. D. White, M. A. Avery, S. C. Choudhry, O. P. Dhingra, B. D. Gray,
M. C. Kang, S. C. Kuo and A. J. Whittle, J. Am. Chem. Soc., 1989, 111,
790.
◦
a solid. Mp = 124 C; tr = 14.275 min; [a]2D0 = -89.0 (c = 1.90,
1
CH2Cl2); H NMR (CDCl3, 300 MHz): d 1.04 (d, 3H, J = 7.0
Hz), 1.08 (d, 3H, J = 7.2 Hz), 1.35 (s, 9H), 1.50 (s, 9H), 2.24–2.36
(m, 1H), 2.40–2.52 (m, 2H), 3.98–4.02 (m, 2H), 4.23 (d, 1H,
J = 4.5 Hz), 5.60–5.70 (m, 1H), 5.86–5.94 (m, 1H); 13C NMR
(CDCl3, 75 MHz): d 19.1, 19.2, 28.0, 28.2, 30.6, 30.9, 43.6, 62.8,
67.0, 81.7, 83.8, 118.5, 126.0, 150.0, 155.1, 171.1, 206.2; HRMS
(FAB+) m/z calcd for C21H32N2O6 [M + H+] 409.2339, found
409.2347.
14 R. A. Holton, C. Somoza, H. B. Kim, F. Liang, R. J. Biediger, D.
Boatman, M. Shindo, C. C. Smith, S. Kim, H. Nadizadeh, Y. Suzuki,
C. Tao, P. Vu, S. Tang, P. Zhang, K. K. Murthy, L. N. Gentile and J. H.
Liu, J. Am. Chem. Soc., 1994, 116, 1597.
15 G. S. Singh, M. D’hooghe and N. De Kimpe, Chem. Rev., 2007, 107,
2080.
16 M. Goodman and S. Ro, in Burger’s Medicinal Chemistry and Drug
Discovery Volume I: Principles and Practice, ed. M. E. Wolff, John
Wiley & Sons, New York, 5th edn,1995, vol. 1, pp. 833–838.
17 P. A. Hart, in The Practice of Medicinal Chemistry, ed. C. J. Wermuth,
Academic Press, London, 1996, pp. 393–412.
18 T. K. Sawyer, in Structure-Based Drug Design: Targets, Techniques and
Developments, ed. P. Veerapandian, Marcel Dekker, New York, 1997,
vol. 1, pp. 559–634.
19 V. J. Hruby and P. S. Hill, in Conformational Analysis of Medium-Sized
Heterocycles, ed. R. S. Glass, VCH, New York, 1998, pp. 217–260.
20 A. Fe´lix, in Houben-Weyl Methods in Organic Chemistry: Synthesis of
Peptides and Peptidomimetics, ed. M. Goodman, A. Fe´lix, L. Moroder
and C. Toniolo, Georg Thieme Verlag, Stuttgart, 2004, vol. E22c.
21 A. Giannis and T. Kolter, Ang. Chem., Int. Ed. Engl., 1993, 32, 1244.
22 J. Gante, Ang. Chem., Int. Ed. Engl., 1994, 33, 1699.
23 P. Gillespie, J. Cicariello and G. L. Olson, Biopolymers, 1997, 43, 191.
24 S. Hanessian, G. McNaughton-Smith, H.-G. Lombart and W. D.
Lubell, Tetrahedron, 1997, 53, 12789.
25 A. S. Ripka and D. H. Rich, Curr. Opin. Chem., 1998, 441.
26 O. Labbuda-Dawidowska, T. H. Wierzba, A. Prahl, W. Kowalczyk, L.
Gawinski, M. Plackova, J. Slaninova and B. Lammek, J. Med. Chem.,
2005, 48, 8055.
(3R)-3-isoPropyl-1-oxo-1,3,5,8-tetrahydro-4-oxa-2,9-diaza-
cyclopentacyclooctene-2,9-dicarboxylic acid di-tert-butyl ester 16a
To a stirred solution of (5R)-4-allyloxy-3-[allyl-(tert-butoxy-
carbonyl)amino]-1-(tert-butoxycarbonyl)-5-isopropyl-3-pyrrolin-
2-one 17 (0.403 g, 0.92 mmol) in dichloromethane (20 mL)
was added Grubbs’ catalyst (2% mol of benzylidene-[1,3-bis-
(2,4,6-trimethylphenyl)-2-imidazolidinylidene]-dichloro (tricyclo-
hexyl phosphane) ruthenium, 0.016 g, in 2 mL of dichloromethane,
0.0185 mmol). The reaction mixture was stirred for 2 h. DMSO
(0.08 mL, 0.92 mmol, 50 equiv. related to catalyst) was then
added and the solution was stirred for an additional 12 hours.
After concentration in vacuo, the residue was purified by flash
chromatography on silica gel (CH2Cl2–AcOEt, 100 : 0 → 80 : 20)
to produce the compound16a (0.295g, 78%yield)as acolorless oil.
The 1H NMR spectrum of compound 16a gave two sets of peaks
for the methyl protons of one Boc and also two sets of peaks for the
isopropyl group. A high-temperature 1H NMR study in DMSO-d6
allowed us to correlate this observation with E/Z isomerisation
of the N1-Boc. Coalescence of the proton resonances occurred
at 120 ◦C. Once back at room temperature, the splitting of the
signals returned and the NMR spectrum was identical to the
initial spectrum, allowing us to prove that the compound was
not damaged. [a]2D0 = -66.9 (c = 1.45, CH2Cl2); tr = 13.428 min;
27 R. M. Freidinger, D. F. Veber, D. S. Perlow, J. R. Brooks and R.
Saperstein, Science, 1980, 210, 656.
28 R. M. Freidinger, D. S. Perlow and D. F. Veber, J. Org. Chem., 1982,
47, 104.
29 S. J. Miller, H. E. Blackwell and R. H. Grubbs, J. Am. Chem. Soc.,
1996, 118, 9606.
30 F. P. J. T. Rutjes and H. E. Schoemaker, Tetrahedron Lett., 1997, 38,
677.
31 A. J. Phillips and A. D. Abell, Aldrichimica Acta, 1999, 32, 75.
32 C. J. Creighton and A. B. Reitz, Org. Lett., 2001, 3, 893.
33 R. D. Long and K. D. Moeller, J. Am. Chem. Soc., 1997, 119, 12394.
34 D. Trancard, J. B. Tout, T. Giard, I. Chichaoui, D. Cahard and J.-C.
Plaquevent, Tetrahedron Lett., 2000, 41, 3843.
35 M. Gutie´rrez-Rodriguez, M. T. Garcia-Lopez and R. Herranz, Tetra-
hedron, 2004, 60, 5177.
36 C. Cativiela and M.-D. Diaz-de-Villegas, Tetrahedron: Asymmetry,
2000, 11, 645.
37 J. S. Clark and M. D. Middelton, Org. Lett., 2002, 4, 765.
38 K.-P. Park and M. J. Kurth, Tetrahedron, 2002, 58, 8629.
39 T. Kawabata, S. Kawakami and S. Majumdar, J. Am. Chem. Soc., 2003,
125, 13012.
◦
1H NMR (DMSO-d6, 400 MHz) at 25 C: d 0.60 (m, 1H), 0.72
(d, 2H, J = 7.0 Hz), 0.90 (m, 1H), 0.97 (d, 2H, J = 7.2 Hz), 1.28
(s, 3H), 1.34 (s, 6H), 1.53 (s, 9H), 2.18–2.37 (m, 1H), 3.39–3.61
(m, 1H), 4.17 (d, 1H, J = 2.5 Hz), 4.42–5.15 (m, 3H), 5.72–5.92
(m, 2H);13C NMR (CDCl3, 100 MHz) at 25 ◦C: d 16.0, 18.5,
18.8, 28.1, 28.3, 29.8, 30.2, 49.7, 62.2, 63.6, 81.2, 81.5, 82.6, 109.0,
121.2, 136.5, 149.3, 154.6, 166.3, 167.3; HRMS (FAB+) m/z calcd
for C21H32N2O6 [M + H+] 409.2339, found 409.2324.
40 T. Ooi, T. Miki and K. Maruoka, Org. Lett., 2005, 7, 191.
41 F. E. King, T. J. King, and A. J. Warwick, J. Chem. Soc., 1950,
3590.
42 L. A. Watanabe, S. Haranaka, B. Jose, M. Yoshida, T. Kato, M.
Moriguchi, K. Soda and N. Nishino, Tetrahedron: Asymmetry, 2005,
16, 903.
Notes and references
1 D. Farran, I. Parrot, J. Martinez and G. Dewynter, Angew. Chem., Int.
Ed., 2007, 46, 7488.
2 S. D. Lee, T. H. Chan and K. S. Kwon, Tetrahedron Lett., 1984, 25,
3399.
3 O. Hara, M. Ito and Y. Hamada, Tetrahedron Lett., 1998, 39, 5537.
4 B. J. L. Royles, Chem. Rev., 1995, 95, 1981.
5 D. Farran, L. Toupet, J. Martinez and G. Dewynter, Org. Lett., 2007,
9, 4833.
6 T. Coursindel, D. Farran, J. Martinez and G. Dewynter, Tetrahedron
Lett., 2008, 49, 906.
43 R. H. Grubbs and S. Chang, Tetrahedron, 1998, 54, 4413.
44 S. J. Miller, S.-H. Kim, Z.-R. Chen and R. H. Grubbs, J. Am. Chem.
Soc., 1995, 117, 2108.
45 Experiments were performed on Silicon Graphics Indigo using Dis-
cover Molecular Simulation program, Biosym/MSI (Accelrys, San
Diego, USA).
3996 | Org. Biomol. Chem., 2008, 6, 3989–3996
This journal is
The Royal Society of Chemistry 2008
©