Published on Web 12/23/2008
Nucleophilicity Parameters for Phosphoryl-Stabilized
Carbanions and Phosphorus Ylides: Implications for Wittig
and Related Olefination Reactions
Roland Appel, Robert Loos,† and Herbert Mayr*
Department Chemie und Biochemie, Ludwig-Maximilians-UniVersita¨t Mu¨nchen,
Butenandtstrasse 5-13 (Haus F), 81377 Mu¨nchen, Germany
Received July 18, 2008; E-mail: herbert.mayr@cup.uni-muenchen.de
Abstract: The kinetics of the reactions of four phosphoryl-stabilized carbanions 1a-d and four phosphorus
ylides 1e-h with benzhydrylium ions 2a-h and structurally related quinone methides 2i-m have been
determined by UV-vis spectroscopy. The second-order rate constants (k) correlated linearly with the
electrophilicity parameters E of 2a-m, as required by the correlation log k ) s(N + E) (J. Am. Chem. Soc.
2001, 123, 9500-9521), allowing us to calculate the nucleophile-specific parameters N and s for phosphoryl-
substituted carbanions and phosphorus ylides. In this way, a direct comparison of the nucleophilic reactivities
of Horner-Wadsworth-Emmons carbanions and Wittig ylides became possible. Ph2PO- and (EtO)2PO-
substituted carbanions are found to show similar reactivities toward Michael acceptors, which are 104-105
times higher than those of analogously substituted phosphorus ylides. The relative reactivities of these
nucleophiles toward benzaldehydes differ significantly from those toward carbocations and Michael
acceptors, in accordance with a concerted [2 + 2] cycloaddition being the initial step of these olefinations
reactions. Effects of the counterion (K+, Na+, or Li+) on the nucleophilicities of the phosphoryl-stabilized
carbanions in DMSO have been studied. Whereas the effects of K+ and Na+ are almost negligible for all
types of carbanions investigated, Li+ coordination reduces the reactivities of phosphonate-substituted acetic
ester anions (1a) by a factor of 102 while the reactivities of phosphonate-substituted acetonitrile anions
(1b) remain almost unaffected.
and can be carried out with high stereoselectivity.4 Detailed
mechanistic investigations by Vedejs and co-workers4e,5 and
Introduction
The Wittig reaction1 as well as the related Wittig-Horner2
and Horner-Wadsworth-Emmons3 reactions are among the
most important methods for synthesizing CdC double bonds.
These olefinations provide access to a wide structural variety
Maryanoff, Reitz, and co-workers6 as well as quantum-chemical
approaches by Yamataka and co-workers,7a,b Aggarwal, Harvey,
and co-workers,7c,d and other authors8 led to the generally
accepted model of salt-free Wittig reactions (Scheme 1). In the
first step, an oxaphosphetane is formed via a concerted
asynchronous [2 + 2] cycloaddition with a transition state in
which the C-C bond formation is more advanced than the P-O
bond formation. The resulting oxaphosphetane decomposes into
† Current address: BASF SE, Ludwigshafen, Germany.
(1) (a) Staudinger, H.; Meyer, J. HelV. Chim. Acta 1919, 2, 635–646. (b)
Wittig, G.; Geissler, G. Liebigs Ann. Chem. 1953, 580, 44–57. (c)
Wittig, G.; Scho¨llkopf, U. Chem. Ber. 1954, 87, 1318–1330.
(2) (a) Horner, L.; Hoffmann, H.; Wippel, H. G. Chem. Ber. 1958, 91,
61–63. (b) Horner, L.; Hoffmann, H.; Wippel, H. G.; Klahre, G. Chem.
Ber. 1959, 92, 2499–2505.
(5) (a) Vedejs, E.; Snoble, K. A. J. J. Am. Chem. Soc. 1973, 95, 5778–
5780. (b) Vedejs, E.; Meier, G. P.; Snoble, K. A. J. J. Am. Chem.
Soc. 1981, 103, 2823–2831. (c) Vedejs, E.; Marth, C. F.; Ruggeri, R.
J. Am. Chem. Soc. 1988, 110, 3940–3948. (d) Vedejs, E.; Marth, C. F.
J. Am. Chem. Soc. 1988, 110, 3948–3958. (e) Vedejs, E.; Fleck, T. J.
J. Am. Chem. Soc. 1989, 111, 5861–5871. (f) Vedejs, E.; Marth, C. F.
J. Am. Chem. Soc. 1990, 112, 3905–3909. (g) Vedejs, E.; Peterson,
M. J. Top. Stereochem. 1994, 21, 1–157.
(3) Wadsworth, W. S.; Emmons, W. D. J. Am. Chem. Soc. 1961, 83, 1733–
1738.
(4) (a) Maryanoff, B. E.; Reitz, A. B. Phosphorus, Sulfur Silicon Relat.
Elem. 1986, 27, 167–189. (b) Maryanoff, B. E.; Reitz, A. B. Chem.
ReV. 1989, 89, 863–927. (c) Clayden, J.; Warren, S. Angew. Chem.,
Int. Ed. Engl. 1996, 35, 241–270. (d) Bojin, M. L.; Barkallah, S.;
Evans, S. A. J. Am. Chem. Soc. 1996, 118, 1549–1550. (e) Vedejs,
E.; Peterson, M. J. AdV. Carbanion Chem. 1996, 2, 1–85. (f) Nicolaou,
K. C.; Ha¨rter, M. W.; Gunzner, J. L.; Nadin, A. Liebigs Ann./Recl.
1997, 1283–1301. (g) Kokin, K.; Iitake, K.-I.; Takaguchi, Y.; Aoyama,
H.; Hayashi, S.; Motoyoshiya, J. Phosphorus, Sulfur Silicon Relat.
Elem. 1998, 133, 21–40. (h) Kolodiazhnyi, O. I. Phosphorus Ylides;
Wiley-VCH: Weinheim, Germany, 1999; pp 258-358. (i) Clayden,
J.; Greeves, N.; Warren, S.; Wothers, P. Organic Chemistry; Oxford
University Press: New York, 2001; pp 814-818. (j) Lo´pez-Ortiz, F.;
(6) (a) Reitz, A. B.; Mutter, M. S.; Maryanoff, B. E. J. Am. Chem. Soc.
1984, 106, 1873–1875. (b) Maryanoff, B. E.; Reitz, A. B.; Mutter,
M. S.; Inners, R. R.; Almond, H. R.; Whittle, R. R.; Olofson, R. A.
J. Am. Chem. Soc. 1986, 108, 7664–7678. (c) Maryanoff, B. E.; Reitz,
A. B.; Graden, D. W.; Almond, H. R. Tetrahedron Lett. 1989, 30,
1361–1364.
(7) (a) Naito, T.; Nagase, S.; Yamataka, H. J. Am. Chem. Soc. 1994, 116,
10080–10088. (b) Yamataka, H.; Nagase, S. J. Am. Chem. Soc. 1998,
120, 7530–7536. (c) Robiette, R.; Richardson, J.; Aggarwal, V. K.;
Harvey, J. N. J. Am. Chem. Soc. 2005, 127, 13468–13469. (d) Robiette,
R.; Richardson, J.; Aggarwal, V. K.; Harvey, J. N. J. Am. Chem. Soc.
2006, 128, 2394–2409.
´
Lo´pez, J. G.; Manzaneda, R. A.; Alvarez, I. J. P. Mini-ReV. Org. Chem.
2004, 1, 65–76. (k) Bru¨ckner, R. Reaktionsmechanismen, 3rd ed.;
Elsevier/Spektrum Akademischer Verlag: Heidelberg, Germany, 2004;
pp 455-483. (l) Smith, M. B.; March, J. March’s AdVanced Organic
Chemistry: Reactions, Mechanism, and Structure, 6th ed.; Wiley:
Hoboken, NJ, 2007; pp 1369-1380.
(8) Further references on theoretical studies of the Wittig reaction are
listed in the Supporting Information.
9
704 J. AM. CHEM. SOC. 2009, 131, 704–714
10.1021/ja8056216 CCC: $40.75
2009 American Chemical Society