ORGANIC
LETTERS
2009
Vol. 11, No. 2
413-416
Reaction Discovery Employing
Macrocycles: Transannular Cyclizations
of Macrocyclic Bis-lactams
Chong Han,† Sathish Rangarajan,† Alicia C Voukides,‡ Aaron B. Beeler,†
Richard Johnson,‡ and John A. Porco, Jr.*,†
Department of Chemistry and Center for Chemical Methodology and Library
DeVelopment, Boston UniVersity, 590 Commonwealth AVenue,
Boston, Massachusetts 02215, and Department of Chemistry, UniVersity of New
Hampshire, Durham, New Hampshire 03824
Received November 25, 2008
ABSTRACT
Macrocyclic bis-lactams have been synthesized by cyclodimerization of homoallylic amino esters employing a Zr(IV)-catalyzed ester-amide
exchange protocol. Base-mediated transannular cyclizations have been identified to access both bicyclic [5-11] and tricyclic [5-8-5] frameworks
in good yield and diastereoselectivity. Preliminary mechanistic studies support an olefin isomerization-intramolecular conjugate addition
pathway.
Macrocyclic natural products often exhibit important biologi-
cal activities and have thus inspired a number of studies
involving diversity-oriented synthesis of macrocyclic frame-
works.1 Recent studies have also highlighted elegant ex-
amples of transannular cyclizations en route to complex
natural products.2 As part of our studies, we considered
preparation of macrocycles as substrates for reaction dis-
covery3 and potential complexity-generating transannular
cyclizations.4,5 In this communication, we report the prepara-
tion of 14-membered ring bis-lactams6 and their conversion
to polycyclic frameworks by divergent, transannular reaction
processes, as well as preliminary computational studies to
probe the reaction mechanism.
To access macrocyclic bis-lactam substrates, we utilized
cyclodimerization of stereochemically well-defined homoal-
lylic amino esters7 using Zr(IV)-catalyzed ester-amide ex-
change.8 Alloc-protected amino esters 1a-d were prepared
(3) (a) Beeler, A. B.; Su, S.; Singleton, C. A.; Porco, J. A., Jr. J. Am.
Chem. Soc. 2007, 129, 1413. (b) Rozenman, M. M.; Kanan, M. W.; Liu,
D. R. J. Am. Chem. Soc. 2007, 129, 14933.
† Boston University.
(4) (a) Sudau, A.; Nubbemeyer, U. Angew. Chem., Int. Ed. 1998, 37,
1140. (b) Rodríguez, G.; Castedo, L.; Domínguez, D.; Saa´, C. J. Org. Chem.
1999, 64, 4830, and references therein. (c) Surprenant, S.; Lubell, W. D.
Org. Lett. 2006, 8, 2851.
‡ University of New Hampshire.
(1) (a) Chantigny, Y. A.; Dory, Y. L.; Toro, A.; Deslongchamps, P.
Can. J. Chem. 2002, 80, 875. (b) Su, Q.; Beeler, A. B.; Lobkovsky, E.;
Porco, J. A., Jr.; Panek, J. S. Org. Lett. 2003, 5, 2149. (c) Schmidt, D. R.;
Kwon, O.; Schreiber, S. L. J. Comb. Chem. 2004, 6, 286. (d) Wessjohann,
L. A.; Ruijter, E. Mol. DiVersity 2005, 9, 159. (e) Beeler, A. B.; Acquilano,
D. E.; Su, Q.; Yan, F.; Roth, B. L.; Panek, J. S.; Porco, J. A., Jr. J. Comb.
Chem. 2005, 7, 673. (f) Shang, S.; Tan, D. S. Curr. Opin. Chem. Biol.
2005, 9, 248.
(5) For transannular cyclizations involving lactams, see: (a) Matsuura,
T.; Yamamura, S. Tetrahedron Lett. 2000, 41, 4805. (b) Appendino, G.;
Tron, G. C.; Jareva˚ng, T.; Sterner, O. Org. Lett. 2001, 3, 1609. (c) Rosales,
A.; Este´vez, R. E.; Cuerva, J. M.; Oltra, J. E. Angew. Chem., Int. Ed. 2005,
44, 319.
(6) (a) Dugat, D.; Chiaroni, A.; Riche, C.; Royer, J.; Husson, H.-P.
Tetrahedron Lett. 1997, 38, 5801. (b) Karle, M.; Bockelmann, D.;
Schumann, D.; Gridsinger, C.; Koert, U. Angew. Chem., Int. Ed. 2003, 42,
4546. (c) Dugat, D.; Valade, A.-G.; Combourieu, B.; Guyot, J. Tetrahedron
2005, 61, 5641.
(2) Select examples: (a) Ji, N.; O’Dowd, H.; Rosen, B. M.; Myers, A. G.
J. Am. Chem. Soc. 2006, 128, 14825. (b) Snider, B. B.; Zhou, J. Org. Lett.
2006, 8, 1283. (c) Scheerer, J. R.; Lawrence, J. F.; Wang, G. C.; Evans,
D. A. J. Am. Chem. Soc. 2007, 129, 8968.
10.1021/ol802729f CCC: $40.75
Published on Web 12/22/2008
2009 American Chemical Society