1 (Cantor) is a psychotropic drug presently used as an
antidepressant.7 Various 3-aminopyridazine derivatives of
γ-aminobutyric acid act as selective GABA-A receptor
antagonists.8,9 In particular, the 6-aryl-3-aminopyridazine
derivative of GABA, SR 95103 [2-(3-carboxypropyl)-3-
amino-4-methyl-6-phenylpyridazinium chloride], showed
high specificity and potency.9 Our synthetic efforts toward
these and related compounds have focused on the preparation
of diversely functionalized 6-aryl (alkyl)-3-aminopyridazine
derivatives.
fragment C to the active methylene compounds containing
cyano group E. In the synthetic direction, we envision the
C(4)-C(5) junction first to be installed via a Michael-type
addition of R-CH2-acidic cyano compounds with chloro-1,2-
diaza-1,3-butadienes, followed by completion of the hetero-
cycle via an internal nucleophilic ring closure. Importantly,
this proposed approach would directly place the requisite
amino group in position 3 of the pyridazine nucleus.
Because most approaches to these heterocycles suffer from
many disadvantages, including inconvenient operations, a
limited number of suitable substrates, harsh reaction conditions,
a high number of steps, and poor yields, the development of
mild and efficient methods for their synthesis is highly desirable.
Effectively, the common five-step strategy for the construction
of 6-phenyl-3-aminopyridazines10 involves synthesis of the
pyridazinone core based on the condensation of acetophenone
with R-ketoester and requires ammonia or hydrazine as a
precursor of the amino function.7c,10a
Scheme 1. Retrosynthetic Analysis of 1-Aminopyridazine A
The presence of a leaving group on the C4 of the azo-ene
skeleton plays a crucial role in the outcome of the reaction.
In fact, the key step of these reactions resides in the formation
of the R,ꢀ-unsatured hydrazones as a result of HX elimina-
tion. It should be noted that these reactions constitute an
umpolung of the classical carbonyl reactivity, since neutral
1,2-diaza-1,3-butadienes enable analogous nucleophilic ad-
ditions at the R hydrazone functionality that corresponds to
the C4 carbon of azo-ene systems.
Surprisingly, there are relatively few reports on employ-
ment of 4-chloro-1,2-diaza-1,3-butadienes in organic syn-
thesis.13 For example, South et al. reported that haloazodienes
reacted in an inverse electron demand Diels-Alder reaction
with enamines to provide tetrahydropyridazine derivatives.13e,g
In 1981, Gilchrist found that ꢀ-chloroazoalkenes reacted with
1,3-dicarbonylcompoundstoyieldfirsttheaddition-elimination
products and then pyrroles when an excess of CH2-acidic
substrate was used.13a Because of these results and of our
interest in certain 3-aminopyridazine targets, we set out to
establish reaction conditions and/or substrates that would
provide the desired 3-aminopyridazines on the basis of our
current working hypothesis.
Figure 1. Structures of some pharmaceutically important 3-aminopy-
ridazine derivatives: Minaprine 1, Gabazine 2, and SR 95103 3.
Our analysis of the 3-aminopyridazine target A (Scheme 1)
emphasizes two strategic disconnections of the pyridazine ring,
along the two carbon-carbon bonds C(4)-C(5) and C(6)-N(1).
This unveils two subunits that trace the left half back to the
hydrazone cation B and the right half to the cyano compound
frame C. Our experience in the heterocyclic constructs entices
us to correlate fragment B to the azo-ene systems D11,12 and
(8) (a) Melikian, A.; Schlewer, G.; Hurt, S.; Chantreux, D.; Wermuth,
C. G. J. Labelled Compd. Radiopharm. 1986, 24, 267–274. (b) Wermuth,
C. G.; Bizie`re, K. Trends Pharmacol. Sci. 1986, 421–424. (c) Heaulme,
M.; Chambon, J. P.; Leyris, R.; Molimard, J.-C.; Wermuth, C. G.; Bizie`re,
K. Brain Res. 1986, 384, 224–231. (d) Heaulme, M.; Chambon, J. P.; Leyris,
R.; Wermuth, C. G.; Bizie`re, K. J. Neurochem. 1987, 48, 1677–1686. (e)
Melikian, A.; Schlewer, G.; Chambon, C. G. J. Med. Chem. 1992, 35, 4092–
4097.
(11) For a review on the chemistry of 1,2-diaza-1,3-butadienes, see: (a)
Attanasi, O. A.; De Crescentini, L.; Filippone, P.; Mantellini, F.; Santeu-
sanio, S. ArkiVoc 2002, xi, 274–292.
(12) For some selected articles on the chemistry of 1,2-diaza-1,3-
butadienes, see: (a) Boeckman, R. K., Jr; Ge, P.; Reed, J. E. Org. Lett.
2001, 3, 3651–3653. (b) Kramp, G. J.; Kim, M.; Gais, H.-J.; Vermeeren,
C. J. Am. Chem. Soc. 2005, 71, 17910–17920. (c) Palacios, F.; Aparicio,
D.; Lo´pez, Y.; de los Santos, J. M. Tetrahedron 2005, 61, 2815–2830. (d)
Attanasi, O. A.; Davoli, P.; Favi, G.; Filippone, P.; Forni, A.; Moscatelli,
G.; Prati, F. Org. Lett. 2007, 9, 3461–3464. (e) Attanasi, O. A.; Favi, G.;
Filippone, P.; Giorgi, G.; Mantellini, F.; Moscatelli, G.; Spinelli, D. Org.
Lett. 2008, 10, 1983–1986.
(9) (a) Bourguignon, J.-J.; Schlewer, G.; Melikian, A.; Chantreux, D.;
Molimard, J.-C.; Heaulme, M.; Chambon, J.-P.; Biziere, K.; Wermuth, C. G.
Pharmacologist 1985, 27518s(b) Chambon, J. P.; Felz, P.; Heaulme, M.;
Restle´, S.; Schlichter, R.; Bizie`re, K.; Wermuth, C. G. Proc. Natl. Acad.
Sci. U.S.A. 1985, 82, 1832–1836. (c) Wermuth, C. G.; Bourguignon, J.-J.;
Schlewer, G.; Gies, J.-P.; Schoenfelder, A.; Melikian, A.; Bouchet, M.-J.;
Chantreux, D.; Molimard, J.-C.; Heaulme, M.; Chambon, J.-P.; Biziere, K.
J. Med. Chem. 1987, 30, 239–249.
(13) (a) Gilchrist, T. L.; Parton, B.; Stevens, J. A. Tetrahedron Lett.
1981, 22, 1059–1062. (b) Gilchrist, T. L.; Stevens, J. A. J. Chem. Soc.,
Perkin Trans. 1985, 1, 1741–1745. (c) South, M. S.; Jakuboski, T. L.
Tetrahedron Lett. 1995, 36, 5703–5706. (d) South, M. S.; Jakuboski, T. L.;
Westmeyer, M. D.; Dukesherer, D. R. Tetrahedron Lett. 1996, 37, 1351–
1354. (e) South, M. S.; Jakuboski, T. L.; Westmeyer, M. D.; Dukesherer,
D. R. J. Org. Chem. 1996, 61, 8921–8934. (f) South, M. S. J. Heterocycl.
Chem. 1999, 36, 301–319. (g) Attanasi, O. A.; Favi, G.; Filippone, P.;
Golobicˇ, A.; Perrulli, F. R.; Stanovnik, B.; Svete, J. Synlett 2007, 2971–
2974.
(10) For synthesis of 3-aminopyridazines, see: (a) Sitamze, J.-M.;
Schmitt, M.; Wermuth, C. G. J. Org. Chem. 1992, 57, 3257–3258. (b)
Rykowski, A.; Wolin˜ska, E. Tetrahedron Lett. 1996, 37, 5795–5796. (c)
Maes, B. U. W.; Lemie`re, G. L. F.; Dommisse, R.; Augustyns, K.; Haemers,
A. Tetrahedron 2000, 56, 1777–1781. (d) Guery, S.; Parrott, I.; Rival, Y.;
Wermuth, C. G. Tetrahedron Lett. 2001, 42, 2115–2117. (e) Bourotte, M.;
Pellegrini, N.; Schmitt, M.; Bourguignon, J.-J. Synlett 2003, 1482–1484.
(f) Lin, S.; Liu, Z.; Hu, Y. J. Comb. Chem. 2007, 9, 742–744.
310
Org. Lett., Vol. 11, No. 2, 2009