A Flexible Route to Chiral 2-endo-Substituted
9-Oxabispidines and Their Application in the
Enantioselective Oxidation of Secondary Alcohols
Matthias Breuning,* Melanie Steiner, Christian Mehler,
Alexander Paasche, and David Hein
Institute of Organic Chemistry, UniVersity of Wu¨rzburg,
Am Hubland, 97074 Wu¨rzburg, Germany
FIGURE 1. Chiral (9-oxa)bispidines and the key intermediate 8.
ReceiVed October 29, 2008
tributed to the (-)-sparteine/Pd(II)-catalyzed oxidative kinetic
resolution of secondary alcohols developed by Stoltz and
Sigman.3-6
Structurally simpler derivatives of 1 that also possess a
chirally modified bispidine (3,7-diazabicyclo[3.3.1]nonane) core
of type 2 are rare since their total synthesis is still a challenging
and laborious task.7-9 The only exception is given by the
tricyclic bispidine 3, which is available in 3 steps from the
natural product (-)-cytisine (4).10,11 Diamine 3 found applica-
tion as a surrogate for the less readily available (+)-sparteine
enantiomer, ent-1.10,12
Our search for novel sparteine substitutes focuses on the
structurally closely related, but only poorly investigated13
9-oxabispidines of type 5. Their cage-like architectures are
comparable to those of the well-known bispidines,14 thus giving
rise to excellent properties as chiral ligands in asymmetric
A new and flexible route to enantiomerically pure bi- and
tricyclic 9-oxabispidines has been developed with use of
(1R,5S)-7-methyl-2-oxo-9-oxa-3,7-diazabicyclo[3.3.1]nonane-
3-carboxylic acid tert-butyl ester as the common late-stage
intermediate. The 9-oxabispidines synthesized were evaluated
as the chiral ligands in the Pd(II)-catalyzed oxidative kinetic
resolution of secondary alcohols giving good to excellent
selectivity factors of up to 19.
(4) (a) Jensen, D. R.; Pugsley, J. S.; Sigman, M. S. J. Am. Chem. Soc. 2001,
123, 7475. (b) Mandal, S. K.; Sigman, M. S. J. Org. Chem. 2003, 68, 7535.
(5) Nielsen, R. J.; Keith, J. M.; Stoltz, B. M.; Goddard, W. A., III J. Am.
Chem. Soc. 2004, 126, 7967.
(6) Ebner, D. C.; Trend, R. M.; Genet, C.; McGrath, M. J.; O’Brien, P.;
Stoltz, B. M. Angew. Chem., Int. Ed. 2008, 47, 6367.
(7) Enantioselective synthesis of 3: (a) Danieli, B.; Lesma, G.; Passarella,
D.; Piacenti, P.; Sacchetti, A.; Silvani, A.; Virdis, A. Tetrahedron Lett. 2002,
43, 7155. (b) Danieli, B.; Lesma, G.; Passarella, D.; Sacchetti, A.; Silvani, A.
Tetrahedron Lett. 2005, 46, 7121. (c) Hermet, J.-P. R.; Viterisi, A.; Wright,
J. M.; McGrath, M. J.; O’Brien, P.; Whitwood, A. C.; Gilday, J. Org. Biomol.
Chem. 2007, 5, 3614.
(8) Enantioselective synthesis of 1 or ent-1: (a) Smith, B. T.; Wendt, J. A.;
Aube´, J. Org. Lett. 2002, 4, 2577. (b) Hermet, J.-P. R.; McGrath, M. J.; O’Brien,
P.; Porter, D. W.; Gilday, J. Chem. Commun. 2004, 1830.
(9) Stereoselective synthesis of other bispidines possessing a chirally modified
core: (a) Phuan, P.-W.; Ianni, J. C.; Kozlowski, M. C. J. Am. Chem. Soc. 2004,
126, 15473. (b) Chau, F. H. V.; Corey, E. J. Tetrahedron Lett. 2006, 47, 2581.
(c) Breuning, M.; Hein, D. Tetrahedron: Asymmetry 2007, 18, 1410.
(10) (a) Dixon, A. J.; McGrath, M. J.; O’Brien, P. Org. Synth. 2006, 83,
141. (b) O’Brien, P. Chem. Commun. 2008, 655.
(11) Synthesis of N-alkyl derivatives of 3 from 4: (a) Dearden, M. J.;
McGrath, M. J.; O’Brien, P. J. Org. Chem. 2004, 69, 5789. (b) Genet, C.;
McGrath, M. J.; O’Brien, P. Org. Biomol. Chem. 2006, 4, 1376. (c) Wilkinson,
J. A.; Rossington, S. B.; Ducki, S.; Leonard, J.; Hussain, N. Tetrahedron 2006,
62, 1833. (d) Johansson, M. J.; Schwartz, L. O.; Amedjkouh, M.; Kann, N. C.
Eur. J. Org. Chem. 2004, 1894. (e) Johansson, M. J.; Schwartz, L.; Amedjkouh,
M.; Kann, N. Tetrahedron: Asymmetry 2004, 15, 3531.
(12) ent-1 is accessible from the naturally occurring alkaloid rac-lupanine
(rac-10-oxosparteine) by reduction and resolution: Ebner, T.; Eichelbaum, M.;
Fischer, P.; Meese, C. O. Arch. Pharm. (Weinheim) 1989, 322, 399.
(13) There is a single lecture abstract, in which an enantioselective route to
6 and some other bicyclic 9-oxabispidines of type 5 is sketched. However, no
yields or characterization data are given, see: Gill, D. M.; Holness, H.; Keegan,
P. S. Abstracts of Papers, 232nd ACS National Meeting, San Francisco, CA;
American Chemical Society: Washington, DC, 2006.
The lupine alkaloid (-)-sparteine (1, Figure 1) belongs to
the privileged ligands in asymmetric synthesis. It is, for example,
the unrivalled chiral auxiliary of choice in almost all enanti-
oselective deprotonation/electrophilic trapping reactions of
weakly C-H acidic compounds using strong organolithium
bases such as s-BuLi.1 The extraordinary complexation proper-
ties of 1 are, however, not restricted to lithium organyls; highly
enantioselective transformations have also been realized in
combination with other metals.2 Particular attention was at-
(1) (a) Hoppe, D.; Hintze, F.; Tebben, P.; Paetow, M.; Ahrens, H.;
Schwerdtfeger, J.; Sommerfeld, P.; Haller, J.; Guarnieri, W.; Kolczewksi, S.;
Hense, T.; Hoppe, I. Pure Appl. Chem. 1994, 66, 1479. (b) Hoppe, D.; Hense,
T. Angew. Chem., Int. Ed. Engl. 1997, 36, 2282. (c) Clayden, J. Organolithiums:
SelectiVity for Synthesis; Pergamon: New York, 2002. (d) Hodgson, D. M. Topics
in Organometallic Chemistry; Springer: Berlin, Germany, 2003; Vol. 5. (e)
Gawley, R. E.; Coldham, I. In The Chemistry of Organolithium Compounds;
Rappoport, Z., Marek, I., Eds.; Wiley: Chichester, UK, 2004; p 997. (f) Hoppe,
D.; Christoph, G. In The Chemistry of Organolithium Compounds; Rappoport,
Z., Marek, I., Eds.; Wiley: Chichester, UK, 2004; p 1055. (g) Chuzel, O.; Riant,
O. In Topics in Organometallic Chemistry; Lemaire, M., Mangeney, P., Eds.;
Springer: Berlin, Germany, 2005; Vol. 15, p 59.
(2) For some examples, see: (a) Shintani, R.; Fu, G. C. Angew. Chem., Int.
Ed. 2002, 41, 1057. (b) Sorger, K.; Petersen, H.; Stohrer, J. U.S. Patent 6924386,
2005. (c) Maheswaran, H.; Prasanth, K. L.; Krishna, G. G.; Ravikumar, K.;
Sridhar, B.; Kantam, M. L. Chem. Commun. 2006, 4066.
(3) (a) Ferreira, E. M.; Stoltz, B. M. J. Am. Chem. Soc. 2001, 123, 7725. (b)
Bagdanoff, J. T.; Ferreira, E. M.; Stoltz, B. M. Org. Lett. 2003, 5, 835. (c)
Bagdanoff, J. T.; Stoltz, B. M. Angew. Chem., Int. Ed. 2004, 43, 353. (d) Caspi,
D. D.; Ebner, D. C.; Bagdanoff, J. T.; Stoltz, B. M. AdV. Synth. Catal. 2004,
346, 185.
(14) Comba, P.; Kerscher, M.; Schiek, W. Prog. Inorg. Chem. 2007, 55,
613.
10.1021/jo802409x CCC: $40.75
Published on Web 12/16/2008
2009 American Chemical Society
J. Org. Chem. 2009, 74, 1407–1410 1407