Bridged Bis(amidinate) Ytterbium Alkoxide and Phenoxide
Scheme 1
Scheme 2
which has the advantage of tunable electronic and steric
effects. These tetradentated “NNNN” groups were first
introduced in lanthanide chemistry by Hessen et al. in 2001.8
However, their usage in the design of lanthanide catalysts
as a supporting ligand has not attracted more attention yet,
although alkoxide and amide derivatives of yttrium supported
by unbridged arylamidinated were reported to be active
catalysts for the polymerization of D,L-lactone.9 Very re-
cently, we reported successful catalyst systems of ytterbium
amides supported by a bis(amidinate) L (L ) Me3SiNC-
(Ph)N(CH2)3NC(Ph)NSiMe3) for the controlled polymeriza-
tion of L-lactide.10 Further study revealed that the ytterbium
amide complex LYb(NHAr)(DME) (Ar ) 2,6-iPr2C6H3) can
also serve as an efficient catalyst for the addition of amines
to nitriles affording, selectively, monosubstituted N-aryla-
midinates.11 These results promoted us to design well-defined
lanthanide alkoxides using these ligands for the controlled
polymerization of lactones.
well-characterized binuclear lanthanide alkoxide-catalyzed,
well-controlled polymerization of lactones. Moreover, the
difference in performance between the two complexes is also
discussed.
In this contribution, we describe the synthesis and char-
acterization of a new ytterbium alkoxide and phenoxide with
the bridged bis(amidinate) ligand L, and their high activity
for the controlled ring-opening polymerization of L-lactide,
as well as ε-caprolactone, presenting the first example for a
Results and Discussion
Syntheses of Complexes 1 and 2. The reaction of
LYbCl(THF)2, which was prepared by a published proce-
dure,12 with 1 equiv of NaOAr (OAr ) 2,6-diisopropylphe-
noxo) was conducted in THF. The reaction went smoothly,
and the chlorine can be simply replaced by the OAr group
to give the corresponding aryloxide LYb(OAr)(DME), 1, as
colorless crystals upon the addition of DME (dimethoxyle-
thane) in good yield. The monomeric nature of 1 was
indicated by an X-ray diffraction study (Scheme 1).
In contrast, the reaction of LYbCl(THF)2 with 1 equiv of
NaOiPr afforded the binuclear complex Yb(µ2-L)2(µ2-
OiPr)2Yb, 2, which was confirmed by a crystal structure
determination, instead of the mononuclear complex LY-
b(OiPr), as the case of aryloxide (Scheme 2). The reaction
is reproducible with the yields ranging from 48 to 53%, and
no mononuclear complex LYb(OiPr) has ever been isolated,
indicating that 2 is more thermodynamically stable than
expected for LYb(OiPr). The formation of 2 demonstrated
that a ligand redistribution reaction occurred concomitantly
during the metathesis reaction. Such a ligand redistribution
reaction with a binuclear complex was seen previously for
the related reaction of LYbCl(THF)2 with NaN(TMS)210 and
Li2L.13 Here, the occurrence of a ligand redistribution may
be attributed to the encapsulation of two OiPr bridges, which
makes the complex more stable. The reaction pathway for
the formation of 2 can be supposed as follows: the attack of
NaOiPr results in the cleavage of one of the linked
bis(amidinate)-Yb bonds, followed by redistribution to
another Yb atom.
(3) (a) Yamashita, M.; Takemoto, Y.; Ihara, E.; Yasuda, H. Macromol-
ecules 1996, 29, 1798. (b) Yasuda, H.; Tamai, H. Prog. Polym. Sci.
1993, 18, 1097. (c) Yasuda, H.; Yamamoto, H.; Yokota, K.; Miyake,
S.; Nakamura, A. J. Am. Chem. Soc. 1992, 114, 4908.
(4) (a) Xue, M.; Sun, H.; Zhou, H.; Yao, Y.; Shen, Q.; Zhang, Y. J. Polym.
Sci., Part A: Polym. Chem. 2006, 44, 1147. (b) Yao, Y. M.; Xu, X. P.;
Zhang, Y.; Shen, S.; Wong, W. T. Inorg. Chem. 2005, 44, 5133. (c)
Simic, V.; Spassky, N.; Hubert-Pfalzgraf, L. G. Macromolecules 1997,
30, 7338. (d) Simic, V.; Girardon, V.; Spassky, N.; Hubert-Pfalzgraf,
L. G.; Duda, A. Polym. Degrad. Stab. 1998, 59, 227. (e) Save, M.;
Schappacher, M. le; Soum, A. Macromol. Chem. Phys. 2002, 203,
889. (f) Spassky, N.; Simic, V.; Montaudo, M. S.; Hubert-Pfalzgraf,
L. G. Macromol. Chem. Phys. 2000, 201, 2432. (g) Agarwal, S.; Mast,
C.; Dehnike, K.; Greiner, A. Macromol. Rapid Commun. 2000, 21,
195. (h) Chamberlain, B. M.; Jazdzewski, B. A.; Pink, M.; Hillmyer,
M. A.; Tolman, W. B. Macromolecules 2000, 33, 3970. (i) Stevels,
W. M.; Ankone´, M. J. K.; Dijkstra, P. J.; Feijen, J. Macromolecules
1996, 29, 3332. (j) Alaaeddine, A.; Amgoune, A.; Thomas, C. M.;
Dagorne, S.; Bellemin-Laonnaz, S.; Carpentier, J.-F. Eur. J. Inorg.
Chem. 2006, 3652.
(5) (a) Ovitt, T. M.; Coates, G. W. J. Am. Chem. Soc. 1999, 121, 4072.
(b) Amgoune, A.; Thomas, C. M.; Roisnel, T.; Carpentier, J.-F.
Chem.sEur. J. 2006, 12, 169. (c) Ma, H.; Spaniol, T. P.; Okuda, J.
Inorg. Chem. 2008, 47, 3328. (d) Yao, Y. M.; Xu, X. P.; Zhang, Y.;
Shen, Q.; Wong, W. T. Inorg. Chem. 2005, 44, 5133.
(6) (a) Cai, C.-X.; Amgoune, A.; Lehmann, C. W.; Carpentier, J.-F.
Chem.Commun. 2004, 330. (b) Ma, H.; Spaniol, T. P.; Okuda, J.
Angew. Chem., Int. Ed. 2006, 118, 7982. (c) Bonnet, F.; Cowley, A. R.;
Mountford, P. Inorg. Chem. 2005, 44, 9046. (d) Amgoune, A.; Thomas,
C. M.; Hinca, S.; Roisnel, T.; Carpentier, J.-F. Angew. Chem., Int.
Ed. 200645, 2782. (e) Amgoune, A.; Thomas, C. M.; Carpentier, J.-
F. Macromol. Rapid Commun. 2007, 28, 693. (f) Ma, H.; Spaniol,
T. P.; Okuda, J. Angew. Chem., Int. Ed. 2006, 45, 7818.
(7) (a) Liu, X.; Shang, X.; Tang, T.; Hu, N.; Pei, F.; Cui, D.; Chen, X.;
Jing, X. Organometallics 2007, 26, 2747. (b) Kerton, F. M.; Whitwood,
A. C.; Willams, C. E. Dalton Trans. 2004, 2237. (c) Ma, H.; Okuda,
J. Macromolecules 2005, 38, 2665. (d) Ma, H.; Spaniol, T. P.; Okuda,
J. Dalton Trans. 2003, 4770. (e) Ma, H.; Melillo, G.; Oliva, L.; Okuda,
J. Dalton Trans. 2005, 721. (f) Schaverien, C. J.; Meijboom, N.; Orpen,
A. G. J. Chem. Soc., Chem. Commun. 1992, 124. (g) Gribkov, D. V.;
Hultzch, K. C.; Hampel, F. Chem.sEur. J. 2003, 9, 4796.
(8) Bambirra, S.; Meetsma, A.; Hessen, B.; Teuben, J. H. Organometallics
2001, 20, 782.
Both complexes 1 and 2 are soluble in THF, DME, and
even in toluene. A strong absorption of the CdN stretch at
approximately 1640 cm-1 was observed for both complexes
in their IR spectra, indicating the delocalized double bond
(9) Aubrecht, K. B.; Chang, K.; Hillmyer, M. A.; Tolman, W. B. J. Polym.
Sci., Part A: Polym. Chem. 2001, 39, 284.
(10) Wang, J.; Cai, T.; Yao, Y.; Zhang, Y.; Shen, Q. Dalton Trans. 2007,
5275.
(12) Wang, J. F.; Yao, Y. M.; Cheng, J. L.; Pang, X. A.; Zhang, Y.; Shen,
Q. J. Mol. Struct. 2005, 743, 229.
(13) Wang, J.; Sun, H.; Yao, Y.; Zhang, Y.; Shen, Q. Polyhedron 2008,
27, 1977.
(11) Wang, J.; Xu, F.; Cai, T.; Shen, Q. Org. Lett. 2008, 10, 445.
Inorganic Chemistry, Vol. 48, No. 2, 2009 745