10.1002/anie.202010768
Angewandte Chemie International Edition
RESEARCH ARTICLE
[1]
a) P. W. N. M. van Leeuwen, C. Claver, Rhodium Catalyzed
Hydroformylation, Vol. 22, Springer, Netherlands, 2002; b) Catalytic
Carbonylation Reactions (Ed.: M. Beller), Springer, Berlin
Heidelberg, 2006; c) B. Breit, in Metal Catalyzed Reductive C@C
reaction goes to the corresponding alkenyl intermediate with
exergonic reaction free energy of 13.5 kcal/mol. This indicates
once again the thermodynamic origin of the observed
regioselectivity.
Bond Formation:
A
Departure from Preformed Organometallic
Reagents (Ed.: M. J. Krische), Springer, Berlin, Heidelberg,
2007, pp. 139-172; d) Modern Carbonylation Methods, Wiley-VCH,
Weinheim, 2008; e) Transition Metals for Organic Synthesis: Building
To analyze the steric effect of different substituents, we computed
the relative energies of the products (Figure 3). For example, 9a
is more stable than 9b by 1.7 kcal/mol, while 10a is more stable
than 10b by 10.6 kcal/mol. Furthermore, 3aa is more stable than
4aa by 10.0 kcal/mol (Figure S3). To confirm this thermodynamic
trend, we computed the relative energy of isomers with H
substitution as reference and the substitution of CH2OTBS, Ph
and SiMe3 is less favored by 1.7, 2,4 and 11.1 kcal/mol,
respectively, indicating the increasing steric interaction. This
energetic order is in line with the observed regioselectivity.
Blocks
and
Fine
Chemicals
(Eds.:
M.
Beller,
C.
Bolm), Wiley-VCH, Weinheim, 2008; f) R. Franke, D. Selent, A.
Bçrner, Chem. Rev. 2012, 112, 5675-5732.
[2]
[3]
a) X.-F. Wu, H. Neumann, M. Beller, Chem. Soc. Rev. 2011, 40, 4986-
5009; b) X.-F. Wu, X. Fang, L. Wu, R. Jackstell, H. Neumann, M. Beller,
Acc. Chem. Res. 2014, 47, 1041-1053; c) B. Sam, B. Breit, M. J. Krische,
Angew. Chem. Int. Ed. 2015, 54, 3267-3274; d) S. D. Friis, A. T.
Lindhardt, T. Skrydstrup, Acc. Chem. Res. 2016, 49, 594-605; e) J.-B.
Peng, F.-P. Wu, X.-F. Wu, Chem. Rev. 2019, 119, 2090−2127.
a) P. Pino, P. Paleari, Gazz. Chim. Ital. 1951, 81, 64; b) S. I. Lee, S. U.
Son, Y. K. Chung, Chem. Commun. 2002, 1310-1311; c) W. Reppe, H.
Main, Chem. Abstr. 1953, 47, 5428; d) A. Striegler, J. Weber, J. Prakt.
Chem. 1965, 29, 281-295; e) Y. Tsuji, T. Ohsumi, T. Kondo, Y. Watanabe,
J. Organomet. Chem. 1986, 309, 333-344; f) K. Dong, X. Fang, R.
Jackstell, G. Laurenczy, Y. Li, M. Beller, J. Am. Chem. Soc. 2015, 137,
6053-6058; g) C. Jim8nez-Rodriguez, A. A. NfflÇez-Magro, T.
Seidensticker, G. R. Eastham, M. R. L. Furst, D. J. Cole-Hamilton, Catal.
Sci. Technol. 2014, 4, 2332-2339; h) H. Liu, N. Yan, P. J. Dyson, Chem.
Commun. 2014, 50, 7848-7851; i) X. Fang, R. Jackstell, M. Beller, Angew.
Chem. Int. Ed. 2013, 52, 14089-14093; j) G. Zhang, B. Gao, H. Huang,
Angew. Chem. Int. Ed. 2015, 54, 7657-7661; k) T. Xu, F. Sha, H. Alper,
J. Am. Chem. Soc. 2016, 138, 6629-6635; l) J. Liu, H. Li, A. Spannenberg,
R. Franke, R. Jackstell, M. Beller, Angew. Chem. Int. Ed. 2016, 55,
13544-13548.
Figure 3. Relative energy (kcal/mol) of the regioisomers as well as the simplified
reference molecules.
[4]
a) T. K. Hyster, T. Rovis, Chem. Sci. 2011, 2, 1606-1610; b) J.-H. Fan,
W.-T. Wei, M.-B. Zhou, R.-J. Song, J.-H. Li, Angew. Chem., Int. Ed. 2014,
53, 6650-6654; c) X. Mu, T. Wu, H.-Y. Wang, Y.-L. Guo, G. Liu, J. Am.
Chem. Soc. 2012, 134, 878-881; d) The Amide Linkage: Selected
Structural Aspects in Chemistry, Biochemistry and Materials Science; A.
Greenberg, C. M. Breneman, J. F. Liebman, Eds.; Wiley-VCH: New York,
2000; e) M. J. Caulfield, G. G. Qiao, D. H. Solomon, Chem. Rev. 2002,
102, 3067-3084.
Conclusion
In summary, we have developed a general and convenient Pd-
catalyzed hydroamidation of (un)symmetrical 1,3-diynes. For the
first time differently substituted 1,3-diynes undergo highly chemo-,
regio-, and stereoselective transformation to the corresponding
α,β-unsaturated amides. This novel catalytic transformation was
enabled by the “built-in-base” ligand (L6, Neolephos) under mild
conditions and provided a general approach to a variety of
interesting functionalized synthetic building blocks in good to high
yields. The utility of the catalytic system is showcased in versatile
modifications of several structurally complex molecules and
marketed drugs. Mechanistic studies and M06L-SMD density
functional theory computations revealed the key role of the
intrinsic substituents of substrates and the ligand in determining
the selectivity. We believe these findings will provide new impetus
for other selectivity-controlled carbonylation reactions using
unsymmetrical substrates.
[5]
[6]
a) C. Marrano, P. de Macedo, J. W. Keillor, Bioorg. Med. Chem. 2001, 9,
1923-1928; b) C.-C. Hung, W.-J. Tsai, L.-M. Yang Kuo, Y.-H. Kuo, Bioorg.
Med. Chem. 2005, 13, 1791-1797; c) S. Chaudhury, T. R. Welch, B. S.
J. Blagg, ChemMedChem 2006, 1, 1331-1340.
a) E. Valeur, M. Bradley, Chem. Soc. Rev. 2009, 38, 606-631; b) V. J.
Pattabiraman, J. W. Bode, Nature, 2011, 480, 471-479; c) J. M.
Concellón, J.A. Pérez-Andrés, H. Rodríguez-Solla, Angew. Chem., Int.
Ed. 2000, 39, 2773-2775; d) S. Kim, C. J. Lim, Angew. Chem., Int. Ed.
2004, 43, 5378-5380; e) M. K. Hadden, B. S. J. Blagg, J. Org. Chem.
2009, 74, 46974704.
[7]
For reviews, see: a) A. Brennführer, H. Neumann, M. Beller,
ChemCatChem, 2009, 1, 28-41; b) S. Quintero-Duque, K. M. Dyballa, I.
Fleischer, Tetrahedron Lett. 2015, 56, 2634-2650; For selected
examples, see: c) S. Torii, H. Okumoto, M. Sadakane, L. H. Xu, Chem.
Lett. 1991, 20, 1673-1676; d) E. Drent, P. Arnoldy, P. H. M. Budzelaar,
J. Organomet. Chem. 1993, 455, 247-253; e) B. El Ali, A. M. ElGhanam,
M. Fettouhi, J. Tijani, Tetrahedron Lett. 2000, 41, 5761-5764; f) B. El Ali,
J. Tijani, A. M. El-Ghanam, Appl. Organomet. Chem. 2002, 16, 369-376;
g) B. El Ali, J. Tijani, A. M. El-Ghanam, J. Mol. Catal. A: Chem. 2002,
187, 17-33; h) B. El Ali, J. Tijani, Appl. Organomet. Chem. 2003, 17, 921-
931; i) Y. Li, H. Alper, Z. Yu, Org. Lett. 2006, 8, 5199-5201; j) S.-M. Lu,
H. Alper, J. Am. Chem. Soc. 2008, 130, 6451-6455; k) R. Suleiman, J.
Tijani, B. El Ali, Appl. Organomet. Chem. 2010, 24, 38-46; l) H. Liu, G. P.
S. Lau, P. J. Dyson, J. Org. Chem. 2015, 80, 386-391; m) F. Sha, H.
Alper, ACS Catal. 2017, 7, 2220-2229; n) D.-L. Wang, W.-D. Guo, L. Liu,
Q. Zhou, W.-Y. Liang, Y. Lu, Y. Liu, Catal. Sci. Technol., 2019, 9, 1334-
1337; o) K. M. Driller, S. Prateeptongkum, R. Jackstell, M. Beller, Angew.
Chem. Int. Ed. 2011, 50, 537-541; p) M. Pizzetti, A. Russo, E. Petricci,
Chem. Eur. J. 2011, 17, 4523-4528; q) Z. Huang, Y. Dong, Y. Li, M.
Acknowledgements
This work is supported by Evonik Performance Materials GmbH,
the BMBF (Bundesministerium für Bildung und Forschung), and
the State of Mecklenburg-Vorpommern. We thank the analytical
team of LIKAT for their kind support. J. Y. thanks the Chinese
Scholarship Council (CSC) for financial support.
Keywords: catalysis • regioselectivity • hydroamidation • P ligand
• amides
7
This article is protected by copyright. All rights reserved.