Journal of Mass Spectrometry p. 1224 - 1234 (2008)
Update date:2022-08-04
Topics:
Attygalle, Athula B.
Bialecki, Jason B.
Nishshanka, Upul
Weisbecker, Carl S.
Ruzicka, Josef
Collision-induced dissociation of anions derived from orffco- alkyloxybenzoic acids provides a facile way of producing gaseous enolate anions. The alkyloxyphenyl anion produced after an initial loss of CO2 undergoes elimination of a benzene molecule by a double-hydrogen transfer mechanism, unique to the ortho isomer, to form an enolate anion. Deuterium labeling studies confirmed that the two hydrogen atoms transferred in the benzene loss originate from positions 1 and 2 of the alkyl chain. An initial transfer of a hydrogen atom from the C-l position forms a phenyl anion and a carbonyl compound, both of which remain closely associated as an ion/neutral complex. The complex breaks either directly to give the phenyl anion by eliminating the neutral carbonyl compound, or to form an enolate anion by transferring a hydrogen atom from the C-2 position and eliminating a benzene molecule in the process. The pronounced primary kinetic isotope effect observed when a deuterium atom is transferred from the C-l position, compared to the weak effect seen for the transfer from the C-2 position, indicates that the first transfer is the rate determining step. Quantum mechanical calculations showed that the neutral loss of benzene is a thermodynamically favorable process. Under the conditions used, only the spectra from ortho isomers showed peaks at mlz 77 for the phenyl anion and mlz 93 for the phenoxyl anion, in addition to that for the ortho-specific enolate anion. Under high collision energy, the ortho isomers also produce a peak at mlz 137 for an alkene loss. The spectra of meta and para compounds show a peak at mlz 92 for the distonic anion produced by the homolysis of the O-C bond. Moreover, a small peak at mlz 136 for a distonic anion originating from an alkyl radical loss allows the differentiation of para compounds from meta isomers. Copyright
View MoreJiangsu King Road New Materials Co., Ltd.
website:http://www.jskingroad.com
Contact:0519-85720726 0519-85720721 13584535752
Address:No.1,Weihua Road,Xinbei District,Changzhou City,Jiangsu Province
Shandong Jiulong Hisince Pharmaceutical Co.,Ltd.
Contact:+86-15853188990
Address:Huadian Pioneer Park, Huadian Township, Qihe County, Dezhou City, Shandong, P.R.China
Tangshan Moneide Trading Co., Ltd.
Contact:+86-315-8309571
Address:2-7-420 Jidong Building Materials Commercial Center, Tangshan, Hebei, 064000 China
Xi'an Tizan Tech & Industry Co., Ltd.
Contact:86-18629066522
Address:C3009 TANG FENG INTERNATIONAL PLAZA, NO.18 FENGHUI NAN ROAD, XI'AN HIGH TECH ZONE, 710075 CHINA.
Tianjin Crest Pharmaceutical R&D Co., Ltd. (Tianjin Yao Technology Development Co., Ltd.)(expird)
Contact:+86-22-66211386
Address:Building B5-405, No, 80 4th Avenue, TEDA, Tianjin, China P.R. 300457
Doi:10.1016/j.tetlet.2008.10.080
(2009)Doi:10.1016/j.jorganchem.2008.10.004
(2009)Doi:10.1016/S0040-4039(00)85408-8
(1986)Doi:10.1002/chem.200800671
(2008)Doi:10.1016/S0040-4039(00)83859-9
(1986)Doi:10.1002/adsc.200700282
(2008)