320 Journal of Medicinal Chemistry, 2009, Vol. 52, No. 2
LaVogina et al.
(15) Lienhard, G. E.; Secemski, I. I. P1, P5-Di(adenosine-5′)pentaphosphate,
a potent multisubstrate inhibitor of adenylate kinase. J. Biol. Chem.
1973, 248, 1121–1123.
(16) Parang, K.; Till, J. H.; Ablooglu, A. J.; Kohanski, R. A.; Hubbard,
S. R.; Cole, P. A. Mechanism-based design of a protein kinase
inhibitor. Nat. Struct. Biol. 2001, 8, 37–41.
visualization and quantification of the fluorescent spots were carried
out by fluorescence imaging. The data were processed with
Graphpad Prism software version 4.03.
Fluorescence Polarization-Based Binding/displacement Kinase
Assay. All concentration-dependent binding experiments were
performed as previously described40 using 3-fold dilution series in
the assay buffer (150 mM NaCl, 50 mM HEPES hemisodium salt
pH 7.5, 5 mM DTT, 0.5 g/L BSA) with 10 min incubation time.
The concentration of fluorescent ligand was 2 nM, and the
concentration of enzyme was 3 nM for PKA and 20 nM for ROCK-
II; the final solution volume in the wells was 20 µL. The binding
curves were fitted using GraphPad Prism version 4.03 using
sigmoidal dose-response variable slope regression functions. The
dissociation/displacement constants Kd were calculated with the aid
of the online calculator for fluorescence-based competitive binding
(17) Jencks, W. P. On the attribution and additivity of binding energies.
Proc. Natl. Acad. Sci. U.S.A. 1981, 78, 4046–4050.
(18) Ricouart, A.; Gesquiere, J. C.; Tartar, A.; Sergheraert, C. Design of
potent protein kinase inhibitors using the bisubstrate approach. J. Med.
Chem. 1991, 34, 73–78.
(19) Garber, K. The second wave in kinase cancer drugs. Nat. Biotechnol.
2006, 24, 127–130.
(20) Enkvist, E.; Raidaru, G.; Vaasa, A.; Pehk, T.; Lavogina, D.; Uri, A.
Carbocyclic 3′-deoxyadenosine-based highly potent bisubstrate-analog
inhibitor of basophilic protein kinases. Bioorg. Med. Chem. Lett. 2007,
17, 5336–5339.
(21) Viht, K.; Schweinsberg, S.; Lust, M.; Vaasa, A.; Raidaru, G.; Lavogina,
D.; Uri, A.; Herberg, F. W. Surface-plasmon-resonance-based bio-
sensor with immobilized bisubstrate analog inhibitor for the determi-
nation of affinities of ATP- and protein-competitive ligands of cAMP-
dependent protein kinase. Anal. Biochem. 2007, 362, 268–277.
(22) Taylor, S. S.; Yang, J.; Wu, J.; Haste, N. M.; Radzio-Andzelm, E.;
Anand, G. PKA: a portrait of protein kinase dynamics. Biochim.
Biophys. Acta 2004, 1697, 259–269.
(23) Taylor, S. S.; Kim, C.; Vigil, D.; Haste, N. M.; Yang, J.; Wu, J.;
Anand, G. S. Dynamics of signaling by PKA. Biochim. Biophys. Acta
2005, 1754, 25–37.
(24) Bonn, S.; Herrero, S.; Breitenlechner, C. B.; Elbruch, A.; Lehmann,
W.; Engh, R. A.; Gassel, M.; Bossemeyer, D. Structural analysis of
protein kinase A mutants with Rho-kinase inhibitor specificity. J. Biol.
Chem. 2006, 281, 24818–24830.
(25) Gassel, M.; Breitenlechner, B. C.; Ru¨ger, P.; Jucknischke, U.;
Schneider, T.; Huber, R.; Bossemeyer, D.; Engh, R. A. Mutants of
protein kinase A that mimic the ATP-binding site of protein kinase B
(AKT). J. Mol. Biol. 2003, 329, 1021–1034.
Acknowledgment. We thank Ursel Soomets (Department
of Biochemistry, University of Tartu) for the support with
MALDI TOF MS analysis, and Sulev Ko˝ks (Department of
Physiology, University of Tartu) with the use of Molecular
Imager. The work was supported by grants from the Estonian
Science Foundation (6710) and the Estonian Ministry of
Education and Sciences (SF0180121s08).
Supporting Information Available: View of the total crystal
structure of PKA CR-compound 1 complex, tables listing structures
and analytical data of the inhibitors, and descriptions of synthesis
routes of inhibitors 2 and 8-12 and their precursor compounds.
This material is available free of charge via the Internet at http://
pubs.acs.org.
(26) Gassel, M.; Breitenlechner, C. B.; Ko¨nig, N.; Huber, R.; Engh, R. A.;
Bossemeyer, D. The protein kinase C inhibitor bisindolyl maleimide
2 binds with reversed orientations to different conformations of protein
kinase A. J. Biol. Chem. 2004, 279, 23679–23690.
(27) Breitenlechner, C.; Gassel, M.; Hidaka, H.; Kinzel, V.; Huber, R.;
Engh, R. A.; Bossenmeyer, D. Protein kinase A in complex with Rho-
kinase inhibitors Y-27632, Fasudil, and H-1152P: structural basis of
selectivity. Structure 2003, 11, 1595–1607.
(28) Prade, L.; Engh, R. A.; Girod, A.; Kinzel, V.; Huber, R.; Bossemeyer,
D. Staurosporine-induced conformational changes of cAMP-dependent
protein kinase catalytic subunit explain inhibitory potential. Structure
1997, 5, 1627–1637.
(29) Engh, R. A.; Girod, A.; Kinzel, V.; Huber, R.; Bossemeyer, D. Crystal
structures of catalytic subunit of cAMP-dependent protein kinase in
complex with isoquinolinesulfonyl protein kinase inhibitors H7, H8,
and H89. Structural implications for selectivity. J. Biol. Chem. 1996,
271, 26157–26164.
(30) Akamine, P.; Madhusudan; Brunton, L. L.; Ou, H. D.; Canaves, J. M.;
Xuong, N. H.; Taylor, S. S. Balanol analogues probe specificity
determinants and the conformational malleability of the cyclic 3′,5′-
adenosine monophosphate-dependent protein kinase catalytic subunit.
Biochemistry 2004, 43, 85–96.
(31) Breitenlechner, C. B.; Wegge, T.; Berillon, L.; Graul, K.; Marzenell,
K.; Friebe, W. G.; Thomas, U.; Schumacher, R.; Huber, R.; Engh,
R. A.; Masjost, B. Structure-based optimization of novel azepane
derivatives as PKB inhibitors. J. Med. Chem. 2004, 47, 1375–1390.
(32) Zhang, X.; Gureasko, J.; Shen, K.; Cole, P. A.; Kuriyan, J. An allosteric
mechanism for activation of the kinase domain of epidermal growth
factor receptor. Cell. 2006, 125, 1137–1149.
(33) Levinson, N. M.; Kuchment, O.; Shen, K.; Young, M. A.; Koldobskiy,
M.; Karplus, M.; Cole, P. A.; Kuriyan, J. A Src-like inactive
conformation in the abl tyrosine kinase domain. PLoS Biol. 2006, 4,
753–767.
(34) Cheng, K. Y.; Noble, M. E.; Skamnaki, V.; Brown, N. R.; Lowe, E. D.;
Kontogiannis, L.; Shen, K.; Cole, P. A.; Siligardi, G.; Johnson, L. N.
The role of the phospho-CDK2/cyclin A recruitment site in substrate
recognition. J. Biol. Chem. 2006, 281, 23167–23179.
References
(1) Manning, G.; Whyte, D. B.; Martinez, R.; Hunter, T.; Sudarsanam,
S. The protein kinase complement of the human genome. Science 2002,
298, 1912–1934.
(2) Breitenlechner, C.; Gassel, M.; Engh, R.; Bossenmeyer, D. Structural
insights into AGC kinase inhibition. Oncol. Res. 2004, 14, 267–278.
(3) Cohen, P. Protein kinasessthe major drug targets of the twenty-first
century. Nat. ReV. Drug DiscoVery 2002, 1, 309–315.
(4) Noble, M. E.; Endicott, J. A.; Johnson, L. N. Protein kinase inhibitors:
insights into drug design from structure. Science 2004, 303, 1800–
1805.
(5) Pelech, S. Tracking cell signaling protein expression and phosphory-
lation by innovative proteomic solutions. Curr. Pharm. Biotechnol.
2004, 5, 69–77.
(6) Gill, A. L.; Verdonk, M.; Boyle, R. G.; Taylor, R. A comparison of
physicochemical property profiles of marketed oral drugs and orally
bioavailable anti-cancer protein kinase inhibitors in clinical develop-
ment. Curr. Top. Med. Chem. 2007, 7, 1408–1422.
(7) Enkvist, E.; Lavogina, D.; Raidaru, G.; Vaasa, A.; Viil, I.; Lust, M.;
Viht, K.; Uri, A. Conjugation of adenosine and hexa-(D-arginine) leads
to a nanomolar bisubstrate-analog inhibitor of basophilic protein
kinases. J. Med. Chem. 2006, 49, 7150–7159.
(8) Nam, N.-H.; Lee, S.; Ye, G.; Sun, G.; Parang, K. ATP-phosphopeptide
conjugates as inhibitors of Src tyrosine kinases. Bioorg. Med. Chem.
2004, 12, 5753–5766.
(9) Shen, K.; Cole, P. A. Conversion of a tyrosine kinase protein substrate
to a high affinity ligand by ATP linkage. J. Am. Chem. Soc. 2003,
125, 16172–16173.
(10) Fischer, P. M. The design of drug candidate molecules as selective
inhibitors of therapeutically relevant protein kinases. Curr. Med. Chem.
2004, 11, 1563–1583.
(11) Knight, Z. A.; Shokat, K. M. Features of selective kinase inhibitors.
Chem. Biol. 2005, 12, 621–637.
(12) Parang, K.; Cole, P. A. Designing bisubstrate analog inhibitors for
protein kinases. Pharm. Ther. 2002, 93, 145–157.
(35) Viht, K.; Vaasa, A.; Raidaru, G.; Enkvist, E.; Uri, A. Fluorometric
TLC assay for evaluation of protein kinase inhibitors. Anal. Biochem.
2005, 340, 165–170.
(36) Bossemeyer, D.; Engh, R. A.; Kinzel, V.; Ponstingl, H.; Huber, R.
Phosphotransferase and substrate binding mechanism of the cAMP-
dependent protein kinase catalytic subunit from porcine heart as
deduced from the 2.0 A structure of the complex with Mn2+ adenylyl
imidodiphosphate and inhibitor peptide PKI(5-24). EMBO J. 1993,
12, 849–859.
(13) Bogoyevitch, M. A.; Barr, R. K.; Ketterman, A. J. Peptide inhibitors
of protein kinasessdiscovery, characterisation and use. Biochim.
Biophys. Acta 2005, 1754, 79–99.
(14) Lawrence, D. S. New design strategies for ligands that target protein
kinase-mediated protein-protein interactions. In Handbook of Ex-
perimental Pharmacology, Inhibitors of Protein Kinases and Protein
Phosphatases; Pinna, A. L., Cohen, P. T. W., Eds.; Springer-Verlag:
Berlin, 2005; Vol. 167, pp 11-44.