Page 5 of 7
Chemical Science
Please do not adjust margins
Journal Name
ARTICLE
enabling the efficient absorbance of 400 nm light and speeding
up the reaction (Figure 3).
Conclusion
DOI: 10.1039/C8SC02038H
To gain further insight, the quantum yield of the reaction was
measured. While the determined value of φ = 7.6 % is rather
high for photocatalytic reactions, it is in accordance with the
fast reaction times.
In summary, we have developed a photocatalytic version of the
Barbier-type reaction, which generates allylic or benzylic
alcohols from aldehydes or ketones and allyl- or benzyl
bromides under mild conditions via a radical-radical cross-
coupling. Instead of using stoichiometric amounts of zerovalent
metal as a reductant to generate an organometallic carbanion
synthon, we use an organic photocatalyst, a tertiary amine and
visible light to reduce both substrates to the corresponding
radicals. The cross-coupling of these radicals leads to the
desired product and enables a photocatalytic two electron
process.
2.0
DIPEA + Allyl bromide
10 min at 400 nm
20 min at 400 nm
30 min at 400 nm
1.5
1.0
0.5
0.0
Conflicts of interest
There are no conflicts to declare.
300
400
500
600
λ / nm
Acknowledgements
Figure 3 – UV/Vis absorption spectra of allyl bromide (2a, 1 eq.)
and DIPEA (3 eq.) in DMA before irradiation and after 10, 20 and
30 minutes of 400 nm irradiation.
This work was supported by the German Science Foundation
(DFG, GRK 1626). We thank Dr Rudolf Vasold for GS-MS
measurements and Regina Hoheisel for cyclic voltammetry
measurements.
Based on these mechanistic investigations and recent literature
reports,[15, 21] we propose the reaction mechanism depicted in
Scheme 4. Photocatalyst
B is excited upon irradiation with
400 nm light and benzaldehyde (1a) can be reduced to the ketyl
radical 1a•– by a SET from the excited photocatalyst B*. DIPEA
Notes and references
1
2
P. Barbier, C. R. Acad. Sci. 1899, 128, 110-111.
acts as
a sacrificial electron donor to regenerate the
a) T. A. Killinger, N. A. Boughton, T. A. Runge, J. Wolinsky, J.
Organomet. Chem. 1977, 124, 131-134; b) C. Petrier, J. L.
Luche, J. Org. Chem. 1985, 50, 910-912; c) F. Zhou, C. J. Li, Nat.
Commun. 2014, 5, 4254; d) L. Keinicke, P. Fristrup, P. O.
Norrby, R. Madsen, J. Am. Chem. Soc. 2005, 127, 15756-
15761.
photocatalyst from its oxidized form B•+ to the ground state
B.
Irradiation of allyl bromide and DIPEA initiates an electron
transfer, which after the cleavage of Br-, leads to the formation
[21]
of the allyl radical 2a•. The more persistent ketyl radical 1a•–
and the transient allyl radical 2a• recombine in a radical-
[22]
3
a) C.-J. Li, W.-C. Zhang, J. Am. Chem. Soc. 1998, 120, 9102-
radical cross-coupling, which is in accordance with the
9103; b) S. Li, J.-X. Wang, X. Wen, X. Ma, Tetrahedron 2011
67, 849-855.
,
23]
persistent radical effect,[21,
and after protonation, the
4
5
Y. Yamamoto, N. Asao, Chem. Rev. 1993, 93, 2207-2293.
desired product 3a is formed.
a) A. Rizzo, D. Trauner, Org. Lett. 2018; b) B. M. Trost, A. B.
Pinkerton, Tetrahedron Lett. 2000, 41, 9627-9631.
J. Nokami, J. Otera, T. Sudo, R. Okawara, Organometallics
1983, 2, 191-193.
a) K. Frimpong, J. Wzorek, C. Lawlor, K. Spencer, T. Mitzel, J.
Org. Chem. 2009, 74, 5861-5870; b) T.-H. Chan, M.-C. Lee, J.
Org. Chem. 1995, 60, 4228-4232.
S. Wu, Y. Li, S. Zhang, J. Org. Chem. 2016, 81, 8070-8076.
C.-J. Li, Y. Meng, X.-H. Yi, J. Ma, T.-H. Chan, J. Org. Chem. 1997
62, 8632-8633.
6
7
8
9
,
10 a) K. Zeitler, Angew. Chem. Int. Ed. 2009, 48, 9785-9789; b) J.
Xuan, W. J. Xiao, Angew. Chem. Int. Ed. 2012, 51, 6828-6838;
c) N. A. Romero, D. A. Nicewicz, Chem. Rev. 2016; d) D. Ravelli,
S. Protti, M. Fagnoni, Chem. Rev. 2016; e) J. P. Goddard, C.
Ollivier, L. Fensterbank, Acc. Chem. Res. 2016, 49, 1924-1936.
11 a) K. Hironaka, S. Fukuzumi, T. Tanaka, J. Chem. Soc., Perkin
Trans. 2 1984, 1705; b) Y. Zhang, R. Qian, X. Zheng, Y. Zeng, J.
Sun, Y. Chen, A. Ding, H. Guo, Chem. Commun. 2015, 51, 54-
57.
Scheme 2 – Proposed reaction mechanism.
12 M. Chen, X. Zhao, C. Yang, W. Xia, Org. Lett. 2017, 19, 3807-
3810.
13 a) O. Ishitani, C. Pac, H. Sakurai, J. Org. Chem. 1983, 48, 2941-
2942; b) O. Ishitani, S. Yanagida, S. Takamuku, C. Pac, J. Org.
This journal is © The Royal Society of Chemistry 20xx
J. Name., 2013, 00, 1-3 | 5
Please do not adjust margins