N. Brown et al. / Tetrahedron Letters 50 (2009) 63–65
65
OTf
TMS
OH
OTf
i) SnCl2, EtOH
reflux
TMS
TfO
Ph
TMS
TMS
TBAT (2.5 eq), THF, r.t., 6 h
Tf2O, pyridine
9 + 10 (1:1)
88%
or
ii) HCl, Et2O
99%
CH2Cl2
95%
N
CsF (3.0 eq), MeCN, r.t., 6 h
Me
NH3+Cl-
38
NO2
NO2
O
t-Bu
(5 eq)
33
32
30
TMS
OTf
TfO
Ph
Ph
TfO
Ph
Ph
TMS
PhCH2CHO
EtOH, reflux
49%
i) NaNO2, 6 M HCl, 0 °C
ii) SnCl2, HCl, Et2O
52%
TBAT (2.5 eq), THF, r.t., 6 h
12 + 13 (1:1)
89%
or
N
H
TMS
N
+
CsF (3.0 eq), MeCN, r.t., 6 h
Me
39
NHNH3+Cl-
35
36
O
t-Bu
TfO
34
(5 eq)
TMS
N
H
TBAT (2.5 eq), THF, r.t., 6 h
15 (>15:1)
88%
or
5,6 : 4,5 (>5 : 1)
TMS
N
CsF (3.0 eq), MeCN, r.t., 6 h
Me
OTf
40
O
Scheme 7. Fischer indole synthesis of 4,5- and 5,6-o-trimethylsilyl triflate indolyne
t-Bu
precursors.
(5 eq)
Scheme 8. 4,5-, 5,6-, and 6,7-indolynes derived from o-silyltriflates.
fore unknown chemotypes. The 6,7-furan cycloadducts thus repre-
sent a potentially versatile platform for the synthesis of novel 6,7-
annulated indole libraries of either type, 17–18 or 27–29. Addition-
ally, the olefin handle in either type of structure provides a further
point of diversification and the opportunity to generate stereo-
chemically dense annulated indole arynes.
Acknowledgments
We acknowledge the support of this work by the National Insti-
tutes of Health, Grant R01 GM069711. Additional support of this
work was provided by the NIH (Grant P50 GM069663 via the Uni-
versity of Kansas Chemical Methodologies and Library Develop-
ment Center of Excellence (KU-CMLD).
Finally, in an effort to find an alternate route to the indole ary-
nes that does not rely exclusively on metal–halogen exchange pro-
tocols, we developed a Fischer indole synthesis to the 4,5-, 5,6-,
and 6,7-o-trimethylsilyl triflates (Scheme 7). Treatment of 2-tri-
methylsilylphenol18 with Cu(NO3)2 (0.55 equiv) in acetic acid at
0 °C for 3 h afforded an equimolar mixture of 4-nitro-2-(trimethyl-
silyl)phenol 30 and 2-nitro-6-(trimethylsilyl)phenol 31.19 The
nitrophenol 30 was triflated (95%) and converted to its hydrazine
hydrochloride salt 34 in 51% overall yield. Reaction of 34 under
Fischer conditions (EtOH, reflux, 4 h) with phenylacetaldehyde
was remarkably regioselective albeit moderately yielding, giving
a greater than 5:1 ratio of the 5,6- and 4,5-indole products 36
and 35, respectively. This result stands in contrast to the corre-
sponding dibromides or dichlorides4 which under the same condi-
tions resulted in a nearly 1:1 mixture of isomers. By carrying 2-
nitro-6-(trimethylsilyl)phenol 31 through the same scheme, the
corresponding 6-(trimethylsilyl)-1H-indol-7-yl triflate 37 is also
available by this method in 32% overall yield.
References and notes
1. (a) Roberts, J. D.; Simmons, H. E., Jr.; Carlsmith, L. A.; Vaughn, C. W. J. Am. Chem.
Soc. 1953, 75, 3290–3291; (b) Roberts, J. D.; Semenow, D. A.; Simmons, H. E., Jr.;
Carlsmith, L. A. J. Am. Chem. Soc. 1956, 78, 601–611. For a review of arynes in
general, see: (c) Hoffmann, R. W. Dehydrobenzene and Cycloalkynes; Academic:
New York, 1967.
2. (a) Bunnett, J. F.; Brotherton, T. K. J. Org. Chem. 1958, 23, 904–906; (b) Huisgen,
R.; Zirngibl, L. Chem. Ber. 1958, 91, 1438–1452.
3. (a) Kauffmann, T.; Boettcher, F. P. Angew. Chem. 1961, 73, 65–66; (b) Martens, R.
J.; den Hertog, H. J. Tetrahedron Lett. 1962, 643–645.
4. Buszek, K. R.; Luo, D.; Kondrashov, M.; Brown, N.; VanderVelde, D. Org. Lett.
2007, 9, 4135–4137.
5. For attempts to generate the elusive 2,3-indolyne, see: (a) Conway, S. C.;
Gribble, G. W. Heterocycles 1992, 34, 2095–2108; (b) Gribble, G. W.; Conway, S.
C. Synth. Commun. 1992, 22, 2129–2141.
6. (a) Jackson, S. K.; Kerr, M. A. J. Org. Chem. 2007, 72, 1405–1411; (b) Huntley, R.
J.; Funk, R. L. Org. Lett. 2006, 8, 3403–3406; (c) Jackson, S. K.; Banfield, S. C.;
Kerr, M. A. Org. Lett. 2005, 7, 1215–1218; (d) MacLeod, J. K.; Monahan, L. C.
Tetrahedron Lett. 1988, 29, 391–392.
The compounds 35, 36, and 37 each give, after N-methylation,
their respective 5,6-, 4,5-, and 6,7-indolyne cycloadducts by treat-
ment with TBAT20 (2.5 equiv) in THF, or alternatively, CsF
(3.0 equiv) in MeCN, for several hours at room temperature in
the presence of 2-t-butylfuran (Scheme 8). The same ratios of iso-
meric cycloadducts as shown previously were obtained.
7. (a) Nakatsuka, S.; Matsuda, T.; Goto, T. Tetrahedron Lett. 1987, 38, 3671–3674;
(b) Nakatsuka, S.; Matsuda, T.; Goto, T. Tetrahedron Lett. 1986, 27, 6245–6248;
(c) Nakatsuka, S.; Masuda, T.; Asano, O.; Terame, T.; Goto, T. Tetrahedron Lett.
1986, 27, 4327–4330.
8. Moreno, O. A.; Kishi, Y. J. Am. Chem. Soc. 1996, 118, 8180–8181.
9. Muratake, H.; Natsume, M. Tetrahedron Lett. 1987, 28, 2265–2268.
10. Presented at the 236th American Chemical Society National Meeting,
Philadelphia, PA, August 17–21, 2008 (ORGN 679).
In conclusion, we have shown that while 4,5- and 5,6-indolynes
show virtually no regioselectivity in Diels–Alder cycloadditions,
the 6,7-indolyne by contrast is highly regioselective, presumably
due to the polarization influence of the pyrrole ring. Adducts de-
rived from this flexible system can undergo acid-catalyzed rear-
rangement to give stable annulated enones, hydrolysis in air to
give benzoquinones, or react with alkyllithiums to afford exo-
and regioselective ring-opened products. We are presently adapt-
ing this versatile methodology for use in library development as
well as in the total synthesis of indole alkaloid natural products.
The results of these efforts will be reported as developments
warrant.
11. Coe, J. W.; Wirtz, M. C.; Bashore, C. G.; Candler, J. Org. Lett. 2004, 6, 1589–1592.
12. All new compounds reported herein exhibited satisfactory 1H NMR, 13C NMR,
COSY and NOESY NMR, mass spectral, and elemental analysis data consistent
with their structures.
13. Gribble, G. W.; Keavy, D. J.; Branz, S. E.; Kelly, W. J.; Pals, M. A. Tetrahedron Lett.
1988, 29, 6227–6230.
14. Giles, R. G. F.; Sargent, M. V.; Sianipar, H. J. Chem. Soc., PT1 1991, 1571–1579.
15. Newman, M. S.; Kannan, R. J. Org. Chem. 1976, 41, 3356–3359.
16. Bunnett, J. F.; Zahler, R. E. Chem. Rev. 1951, 49, 273–412.
17. Lautens, M.; Fagnou, K.; Hiebert, S. Acc. Chem. Res. 2003, 36, 48–58.
18. (a) Himeshima, Y.; Sonoda, T.; Kobayashi, H. Chem. Lett. 1983, 1211–1214; (b)
Wilbur, D. S.; Stone, W. E.; Anderson, K. W. J. Org. Chem. 1983, 48, 1542–1544.
19. Anuradha, V.; Srinivas, P. V.; Aparna, P.; Rao, J. M. Tetrahedron Lett. 2006, 47,
4933–4935.
20. Pilcher, A. S.; DeShong, P. J. Org. Chem. 1996, 61, 6901–6905.