Journal of the American Chemical Society
Article
(13) Carrow, B. P.; Nozaki, K. Synthesis of Functional Polyolefins
Using Cationic Bisphosphine Monoxide−Palladium Complexes. J.
Am. Chem. Soc. 2012, 134 (21), 8802−8805.
Low-Density Polyethylene with Polar Groups. Angew. Chem., Int. Ed.
2005, 44 (39), 6410−6413.
(33) Bae, C.; Hartwig, J. F.; Boaen Harris, N. K.; Long, R. O.;
Anderson, K. S.; Hillmyer, M. A. Catalytic Hydroxylation of
Polypropylenes. J. Am. Chem. Soc. 2005, 127 (2), 767−776.
(34) Kondo, Y.; García-Cuadrado, D.; Hartwig, J. F.; Boaen, N. K.;
Wagner, N. L.; Hillmyer, M. A. Rhodium-Catalyzed, Regiospecific
Functionalization of Polyolefins in the Melt. J. Am. Chem. Soc. 2002,
124 (7), 1164−1165.
(14) Nakamura, A.; Ito, S.; Nozaki, K. Coordination-Insertion
Copolymerization of Fundamental Polar Monomers. Chem. Rev.
2009, 109, 5215−5244.
(15) Zhang, W.; Waddell, P. M.; Tiedemann, M. A.; Padilla, C. E.;
Mei, J.; Chen, L.; Carrow, B. P. Electron-Rich Metal Cations Enable
Synthesis of High Molecular Weight, Linear Functional Polyethylenes.
J. Am. Chem. Soc. 2018, 140 (28), 8841−8850.
(35) Foster, G. N.; Wasserman, S. H.; Yacka, D. J. Oxidation
behavior and stabilization of metallocene and other polyolefins.
Angew. Makromol. Chem. 1997, 252, 11−32.
(36) Liu, D.; Bielawski, C. W. Direct azidation of isotactic
polypropylene and synthesis of ‘grafted to’ derivatives thereof using
azide−alkyne cycloaddition chemistry. Polym. Int. 2017, 66 (1), 70−
76.
(37) Li, H.; Ma, P.; Chen, Y.; Zhou, H.; Huang, H.; Liu, L.; Li, L.;
Plummer, C. M. Regioselective post-functionalization of isotactic
polypropylene by amination in the presence of N-hydroxyphthali-
mide. Polym. Chem. 2019, 10 (5), 619−626.
(38) Zhou, H.; Wang, S.; Huang, H.; Li, Z.; Plummer, C. M.; Wang,
S.; Sun, W. H.; Chen, Y. Direct Amination of Polyethylene by Metal-
Free Reaction. Macromolecules 2017, 50 (9), 3510−3515.
(39) Coiai, S.; Augier, S.; Pinzino, C.; Passaglia, E. Control of
degradation of polypropylene during its radical functionalisation with
furan and thiophene derivatives. Polym. Degrad. Stab. 2010, 95, 298−
305.
(40) Moad, G.; Rizzardo, E.; Thang, S. H. Radical addition−
fragmentation chemistry in polymer synthesis. Polymer 2008, 49 (5),
1079−1131.
(41) Chiefari, J.; Mayadunne, R. T. A.; Moad, C. L.; Moad, G.;
Rizzardo, E.; Postma, A.; Skidmore, M. A.; Thang, S. H.
Thiocarbonylthio Compounds (SC(Z)S-R) in Free Radical Polymer-
ization with Reversible Addition-Fragmentation Chain Transfer
(RAFT Polymerization). Effect of the Activating Group Z. Macro-
molecules 2003, 36, 2273−2283.
(42) Mayadunne, R. T. A.; Rizzardo, E.; Chiefari, J.; Krstina, J.;
Moad, G.; Postma, A.; Thang, S. H. Living Polymers by the Use of
Trithiocarbonates as Reversible Addition-Fragmentation Chain
Transfer (RAFT) Agents: ABA Triblock Copolymers by Radical
Polymerization in Two Steps. Macromolecules 2000, 33 (2), 243−245.
(43) Mayadunne, R. T. A.; Rizzardo, E.; Chiefari, J.; Chong, Y. K.;
Moad, G.; Thang, S. H. Living Radical Polymerization with Reversible
Addition-Fragmentation Chain Transfer (RAFT Polymerization)
Using Dithiocarbamates as Chain Transfer Agents. Macromolecules
1999, 32 (21), 6977−6980.
(44) Czaplyski, W. L.; Na, C. G.; Alexanian, E. J. C−H Xanthylation:
A Synthetic Platform for Alkane Functionalization. J. Am. Chem. Soc.
2016, 138 (42), 13854−13857.
(45) Na, C. G.; Alexanian, E. J. A General Approach to Site-Specific,
Intramolecular C-H Functionalization Using Dithiocarbamates.
Angew. Chem., Int. Ed. 2018, 57 (40), 13106−13109.
(46) Smith, G. E. P.; Alliger, G.; Carr, E. L.; Young, K. C.
Thiocarbamylsulfenamides. J. Org. Chem. 1949, 14 (6), 935−945.
(47) Gottfried, A. C.; Brookhart, M. Living Polymerization of
Ethylene Using Pd(II) α-Diimine Catalysts. Macromolecules 2001, 34
(5), 1140−1142.
(48) Williamson, J. B.; Czaplyski, W. L.; Alexanian, E. J.; Leibfarth,
F. A. Regioselective C-H Xanthylation as a Platform for Polyolefin
Functionalization. Angew. Chem., Int. Ed. 2018, 57, 6261−6265.
(49) Plummer, C. M.; Zhou, H.; Zhu, W.; Huang, H.; Liu, L.; Chen,
Y. Mild halogenation of polyolefins using an N-haloamide reagent.
Polym. Chem. 2018, 9 (11), 1309−1317.
(50) Benkeser, R. A.; Hazdra, J. J. Factors Influencing the Direction
of Elimination in the Chugaev Reaction. J. Am. Chem. Soc. 1959, 81
(1), 228−231.
(51) Betou, M.; Male, L.; Steed, J. W.; Grainger, R. S. Carbamoyl
Radical-Mediated Synthesis and Semipinacol Rearrangement of r-
Lactam Diols. Chem. - Eur. J. 2014, 20, 6505−6517.
(16) Chen, Z.; Leatherman, M. D.; Daugulis, O.; Brookhart, M.
Nickel-Catalyzed Copolymerization of Ethylene and Vinyltrialkox-
ysilanes: Catalytic Production of Cross-Linkable Polyethylene and
Elucidation of the Chain-Growth Mechanism. J. Am. Chem. Soc. 2017,
139 (44), 16013−16022.
̈
(17) Leicht, H.; Gottker-Schnetmann, I.; Mecking, S. Synergetic
Effect of Monomer Functional Group Coordination in Catalytic
Insertion Polymerization. J. Am. Chem. Soc. 2017, 139 (20), 6823−
6826.
(18) Diaz-Requejo, M. M.; Wehrmann, P.; Leatherman, M. D.;
Trofimenko, S.; Mecking, S.; Brookhart, M.; Perez, P. J. Controlled,
Copper-Catalyzed Functionalization of Polyolefins. Macromolecules
2005, 38 (12), 4966−4969.
(19) Aglietto, M.; Alterio, R.; Bertani, R.; Galleschi, F.; Ruggeri, G.
Polyolefin functionalization by carbene insertion for polymer blends.
Polymer 1989, 30, 1133−1136.
(20) Shi, D.; Yang, J.; Yao, Z.; Wang, Y.; Huang, H.; Jing, W.; Yin, J.;
Costa, G. Functionalization of isotactic polypropylene with maleic
anhydride by reactive extrusion: mechanism of melt grafting. Polymer
2001, 42 (13), 5549−5557.
(21) Hopmann, C.; Adamy, M.; Cohnen, A. In Reactive Extrusion;
Beyer, G., Hopmann, C., Eds.; Wiley-VCH Verlag GmbH & Co.
KGaA: Weinheim, Germany, 2017; pp 1−10.
(22) Gloor, P. E.; Tang, Y.; Kostanska, A. E.; Hamielec, A. E.
Chemical modification of polyolefins by free radical mechanisms: a
modelling and experimental study of simultaneous random scission,
branching and crosslinking. Polymer 1994, 35 (5), 1012−1030.
(23) Lu, B.; Chung, T. C. Synthesis of maleic anhydride grafted
polyethylene and polypropylene, with controlled molecular structures.
J. Polym. Sci., Part A: Polym. Chem. 2000, 38 (8), 1337−1343.
(24) Zhang, M.; Colby, R. H.; Milner, S. T.; Huang, T.; deGroot,
W.; Chung, T. C. M. Synthesis and Characterization of Maleic
Anhydride Grafted Polypropylene with a Well-Defined Molecular
Structure. Macromolecules 2013, 46, 4313−4323.
(25) Hamielec, A. E.; Gloor, P. E.; Zhu, S. Kinetics of, free radical
modification of polyolefins in extruders − chain scission, crosslinking
and grafting. Can. J. Chem. Eng. 1991, 69 (3), 611−618.
(26) Bettini, S. H. P.; Agnelli, J. A. M. Grafting of maleic anhydride
onto polypropylene by reactive extrusion. J. Appl. Polym. Sci. 2002, 85
(13), 2706−2717.
(27) Porejko, S.; Gabara, W.; Kulesza, J. Grafting of maleic
anhydride on polyethylene. II. Mechanism of grafting in a
homogeneous medium in the presence of radical initiators. J. Polym.
Sci., Part A: Polym. Chem. 1967, 5 (7), 1563−1571.
(28) He, X.; Zheng, S.; Huang, G.; Rong, Y. Solution Grafting of
Maleic Anhydride on Low-Density Polyethylene: Effect on Crystal-
lization Behavior. J. Macromol. Sci., Part B: Phys. 2013, 52 (9), 1265−
1282.
(29) Ray, A.; Zhu, K.; Kissin, Y. V.; Cherian, A. E.; Coates, G. W.;
Goldman, A. S. Dehydrogenation of aliphatic polyolefins catalyzed by
pincer-ligated iridium complexes. Chem. Commun. 2005, 3388−3390.
(30) Bunescu, A.; Lee, S.; Li, Q.; Hartwig, J. F. Catalytic
Hydroxylation of Polyethylenes. ACS Cent. Sci. 2017, 3 (8), 895−903.
(31) Boaen, N. K.; Hillmyer, M. A. Selective and Mild Oxy-
functionalization of Model Polyolefins. Macromolecules 2003, 36 (19),
7027−7034.
(32) Bae, C.; Hartwig, J. F.; Chung, H.; Harris, N. K.; Switek, K. A.;
Hillmyer, M. A. Regiospecific Side-Chain Functionalization of Linear
H
J. Am. Chem. Soc. XXXX, XXX, XXX−XXX