C. V. Ramana, B. Induvadana / Tetrahedron Letters 50 (2009) 271–273
273
effected successfully with Li/t-BuOK16 in 1,3-diaminopropane as
solvent at rt. The resulting alkynol 17 was protected as its TBS
ether to procure the key coupling fragment 7.
2. For recent reviews on synthesis of bridged bicyclic ketals see: (a) Mori, K.
Tetrahedron 1989, 45, 3233–3298; (b) Kotsuki, H. Synlett 1991, 97–106; (c)
Francke, W.; Schröder, W. Curr. Org. Chem. 1999, 3, 407–443; (d) Jun, J.-G.
Synlett 2003, 1759–1777; (e) Kiyota, H. Top. Heterocycl. Chem. 2006, 5, 65–95.
3. Recent reviews: (a) Blunt, J. W.; Copp, B. R.; Munro, M. H. G.; Northcote, P. T.;
Prinsep, M. R. Nat. Prod. Rep. 2003, 20, 1–48; (b) Blunt, J. W.; Copp, B. R.; Hu, W.
–P.; Munro, M. H. G.; Northcote, P. T.; Prinsep, M. R. Nat. Prod. Rep. 2008, 25, 35–
94.
4. For representative total synthesis employing alkynediol cycloisomerizations
see: (a) Trost, B. M.; Horne, D. B.; Woltering, M. J. Angew. Chem., Int. Ed. 2003,
42, 5987–5990; (b) Trost, B. M.; Weiss, A. H. Angew. Chem., Int. Ed. 2007, 46,
7664–7666.
5. (a) Zeni, G.; Larock, R. C. Chem. Rev. 2004, 104, 2285–2309; (b) Alonso, F.;
Beletskaya, I. P.; Yus, M. Chem. Rev. 2004, 104, 3079–3159; (c) Muzart, J.
Tetrahedron 2005, 61, 5955–6008; (d) Hintermann, L.; Labonne, A. Synthesis
2007, 1121–1150; (e) Larrosa, I.; Romea, P.; Urpí, F. Tetrahedron 2008, 64,
2683–2723.
6. (a) Nakamura, H.; Ohtaka, M.; Yamamoto, Y. Tetrahedron Lett. 2002, 43, 7631–
7633; (b) Gabriele, B.; Salerno, G.; Fazio, A.; Pittelli, R. Tetrahedron 2003, 59,
6251–6259; (c) Ramana, C. V.; Mallik, R.; Gonnade, R. G. Tetrahedron 2008, 64,
219–233 and Refs. 5d,e.
After having an easy access to epoxide 6 and alkyne 7, we next
focused our efforts on the synthesis of key cycloisomerization sub-
strate 5. The coupling of 6 with lithiated alkyne 7 in the presence of
BF3ꢀEt2O delivered alkynol 18 in excellent yields (Scheme 2).11 Fi-
nally, the deprotection of acetonide and the TBS protecting groups
of 18 gave tetrol 5.17 The next concern was the key cycloisomeriza-
tion of 5. The treatment of 5 with Pd[CH3CN]2Cl2 (10 mol %) in ace-
tonitrile at room temperature under an argon atmosphere for 2 h
gave exclusively 19 in 70% yield. The structure of 19 was estab-
lished on the basis of spectral and analytical data.18 The presence
of a 6,8-dioxabicyclo[3,2,1]octane moiety in 19 was supported by
the existence of three characteristic methine signals in the 13C
NMR spectrum at 66.3, 77.9, and 82.4 ppm corresponding to
C(8)–C(10) and a quaternary signal corresponding to ketal carbon
at 109.5 ppm which are in agreement with the data reported for
similar derivatives.
7. González, N.; Rodríguez, J.; Jiménez, C. J. Org. Chem. 1999, 64, 5705–5707.
8. Mitchell, S. S.; Rhodes, D.; Bushman, F. D.; Faulkner, D. J. Org. Lett. 2000, 2,
1605–1607.
9. Kiyota, H.; Dixon, D. J.; Luscombe, C. K.; Hettstedt, S.; Ley, S. V. Org. Lett. 2002, 4,
3223–3226.
After executing the synthesis of the central bicyclic core with
the requisite stereochemical information, the remaining portion
of the synthesis required installation of a serinol unit followed by
two carbon elongations at the C(3) end. Simple protective-group
manipulations and mesylation proceeded smoothly to give the
key intermediate 3 in 69% yield, over four steps from diol 19. The
serinol fragment 4 was synthesized according to the reported pro-
cedures.19 By optimizing the conditions reported by Burke and co-
workers, the coupling of 3 and 4 was carried out successfully by the
slow addition of mesylate 3 to a solution of serinol 4 and NaH in
DMSO maintaining the internal temperature at 0 °C. The coupling
product 23 was obtained in 65% yield. Removal of the benzyl ethers
in 23 under hydrogenolysis followed by selective 1°-OH oxidation
of resulting diol 24 with Dess–Martin periodinane (DMP) and two
carbon Wittig homologation completed the synthesis of 2 (Scheme
2). The spectral and analytical data of compound 2 were in agree-
ment with the data reported by Burke and co-workers.20
10. (a) Marvin, C. C.; Voight, E. A.; Burke, S. D. Org. Lett. 2007, 9, 5357–5359; (b)
Marvin, C. C.; Voight, E. A.; Suh, J. M.; Paradise, C. L.; Burke, S. D. J. Org. Chem., in
11. Yamaguchi, M.; Hirao, I. Tetrahedron Lett. 1983, 24, 391–394.
12. Brown, C. A.; Yamashita, A. J. Am. Chem. Soc. 1975, 97, 891–892.
13. English, J. J.; Griswold, J. P. H. J. Am. Chem. Soc. 1948, 70, 1390–1392.
14. Arndt, S.; Emde, U.; Baurle, S.; Friedrich, T.; Grubert, L.; Koert, U. Chem. Eur. J.
2001, 7, 993–1005.
15. Spectral data of epoxide 6: colorless oil. ½a D25
ꢁ
+4.5 (c 1.2, CHCl3). IR (CHCl3):
m
2937, 2861, 1455, 1371, 1217, 1099, 876, 756, 698 cmꢂ1
.
1H NMR (200 MHz,
CDCl3): d 1.33 (s, 6H), 1.33–1.43 (m, 4H), 1.50–1.65 (m, 4H), 2.58 (dd, J = 2.6,
5.1 Hz, 1H), 2.75 (dd, J = 3.9, 5.1 Hz, 1H), 2.88 (ddd, J = 2.6, 3.9, 6.3 Hz, 1H), 3.22
(dd, J = 6.3, 7.8 Hz, 1H), 3.40 (t, J = 6.5 Hz, 2H), 3.89 (br dt, J = 4.7, 7.8 Hz, 1H),
4.43 (s, 2H), 7.18–7.27 (m, 5H) ppm. 13C NMR (50 MHz, CDCl3): d 25.6 (t), 26.1
(t), 26.6 (q), 27.2 (q), 29.5 (t), 33.1 (t), 45.1 (t), 51.6 (d), 70.2 (t), 72.7 (t), 79.6
(d), 81.1 (d), 109.0 (s), 127.4 (d), 127.5 (d, 2C), 128.2 (d, 2C), 138.6 (s) ppm.ESI-
MS: m/z 343.3 (100%, [M+Na]+). Anal. Calcd for C19H28O4: C, 71.22; H, 8.81.
Found: C, 71.40; H, 8.93.
16. Abrams, S. R.; Shaw, A. C. Org. Synth. 1993, Coll. vol. 8, 146.
17. Spectral data of tetrol 5: white solid. ½a D25
ꢁ
ꢂ3.2 (c 0.5, MeOH). IR (Nujol):
m 3438,
2923, 1462, 1377, 1111, 1058, 737, 648 cmꢂ1
.
1H NMR (methanol-d4, 200
MHz): d 1.22 (m, 18H), 1.35–1.59 (m, 16H), 2.10–2.16 (m, 2H), 2.38 (ddt, J = 2.5,
5.8, 16.8 Hz, 1H), 2.54 (ddt, J = 2.5, 4.7, 16.9 Hz, 1H), 3.32 (dt, J = 1.6, 7.1 Hz,
1H), 3.48 (t, J = 6.6 Hz, 2H), 3.52 (t, J = 6.4 Hz, 2H), 3.70 (ddd, J = 4.7, 6.3,
10.5 Hz, 1H), 3.74–3.80 (m, 1H), 4.43 (s, 2H), 7.22–7.28 (m, 5H) ppm. 13C NMR
(methanol-d4, 50 MHz): d 19.1 (t), 21.5 (t), 24.3 (t), 26.0 (t), 26.1 (t), 26.5 (t),
29.3 (t), 29.4 (t), 29.5 (t), 29.8 (t), 29.9 (t), 30.0 (t, 6C), 32.7 (t), 33.7 (t), 62.8 (t),
70.5 (d), 70.8 (t), 71.6 (d), 73.3 (t), 74.3 (s), 76.4 (d), 83.0 (s), 128.0 (d), 128.1 (d,
2C), 128.7 (d, 2C), 138.6 (s) ppm. ESI-MS: m/z 555.4 (100%, [M+Na]+). Anal.
Calcd for C33H56O5: C, 74.39; H, 10.59. Found: C, 74.17; H, 10.44.
In conclusion, a formal synthesis of didemniserinolipid B is doc-
umented. Rapid accesses to the key carbon skeleton and a 6-endo-
selective Pd-mediated cycloisomerization protocol for the central
bicyclic core of the didemniserinolipids highlight the accomplished
synthesis.
Acknowledgments
18. Spectral data of bicyclic ketal 19: colorless syrup. ½a D25
ꢁ
+14.4 (c 1.0, CHCl3). IR
m .
(CHCl3):
3437, 2929, 1639, 1560, 1416, 1216, 757, 668 cmꢂ1 1H NMR (CDCl3,
We thank the Ministry of Science and Technology for funding
through the Department of Science and Technology under the
Green Chemistry Program (No. SR/S5/GC-20/2007). Financial sup-
port from CSIR (New Delhi) in the form of a research fellowship
to B.I. is gratefully acknowledged.
400 MHz): d 1.24–1.32 (m, 23H), 1.35–1.44 (m, 5H), 1.49–1.58 (m, 4H), 1.60–
1.69 (m, 6H), 1.77 (dt, J = 5.5, 12.3 Hz, 1H), 1.92–2.01 (m, 1H), 3.45 (t, J = 6.5 Hz,
2H), 3.57–3.59 (m, 1H), 3.62 (t, J = 6.8 Hz, 2H), 3.87 (dd, J = 5.3, 7.1 Hz, 1H), 4.04
(br s, 1H), 4.48 (s, 2H), 7.26–7.35 (m, 5H) ppm. 13C NMR (CDCl3, 100 MHz): d
22.9 (t), 25.0 (t), 25.3 (t), 25.7 (t), 26.0 (t, 2C), 26.1 (t), 29.4 (t), 29.5 (t), 29.6 (t,
6C), 29.8 (t), 30.1 (t), 32.9 (t), 35.2 (t), 37.5 (t), 63.0 (t), 66.3 (d), 70.3 (t), 72.9 (t),
77.9 (d), 82.4 (d), 109.5 (s), 127.5 (d), 127.6 (d, 2C), 128.3 (d, 2C), 138.6 (s) ppm.
ESI-MS: m/z 555.7 (100%, [M+Na]+). Anal. Calcd for C33H56O5: C, 74.39; H,
10.59. Found: C, 74.20; H, 10.46.
References and notes
19. (a) Garner, P.; Park, J. M. J. Org. Chem. 1987, 52, 2361–2364; (b) Dondoni, A.;
Perrone, D. Org. Synth 2004, Coll. vol. 10, 320.
1. (a) Utimoto, K. Pure Appl. Chem. 1983, 55, 1845–1853; (b) Scheffknecht, C.;
Peringer, P. J. Organomet. Chem. 1997, 535, 77–79; (c) Genin, E.; Antoniotti, S.;
20. Spectral data of compound 2: colorless oil. ½a D25
ꢁ
+24. 6 (c 0.5, CHCl3) lit a 2D5
½ ꢁ +37.6
ˇ
(c 0.98, CHCl3).10a IR (CHCl3):
m 3451, 2928, 1732, 1693, 1465, 1393, 1247,
Michelet, V.; Genet, J.-P. Angew. Chem., Int. Ed. 2005, 44, 4949–4953; (d)
ˇ
1046, 758, 667 cmꢂ1 1H NMR (400 MHz, CDCl3): d 1.24–1.70 (m, 54H), 1.78 (dt,
.
Antoniotti, S.; Genin, E.; Michelet, V.; Genet, J.-P. J. Am. Chem. Soc. 2005, 127,
J = 5.4, 12.4 Hz, 1H), 1.92–2.05 (m, 1H), 2.20 (q, J = 6.8 Hz, 2H), 2.30–2.44 (m,
1H), 3.26–3.60 (m, 5H), 3.60 (br s, 1H), 3.86–3.92 (m, 2H), 3.97–3.99 (m, 1H),
4.05 (br s, 1H), 4.11, 4.17 (2q, J = 7.2 Hz, 2H), 5.80 (br d, J = 15.6 Hz, 1H), 6.94
(dt, J = 7.0, 15.6 Hz, 1H) ppm. 13C NMR (100 MHz, CDCl3): d 14.3 (q), 22.7 (t),
23.0 (t), 23.1, 24.4 (2q, 1C), 25.0 (t), 25.1 (t), 26.1 (t), 26.7, 27.5 (2q, 1C), 27.8 (t),
28.4, 28.5 (2q, 3C), 29.3 (t), 29.5 (t), 29.7 (t, 8C), 29.8 (t), 30.1 (t), 31.9 (t), 35.0
(t), 37.5 (t), 56.3, 56.5 (2d, 1C), 60.2 (t), 65.4, 65.7 (2t, 1C), 66.2 (d), 69.3, 70.0
(2t, 1C), 71.4 (t), 77.7 (d), 79.7, 80.2 (2s, 1C), 82.4 (d), 93.2, 93.7 (2s, 1C), 109.6
(s), 121.5 (d), 148.9 (d), 166.7 (s) ppm. ESI-MS: m/z 746.8 (100%, [M+Na]+).
Anal. Calcd for C41H73NO9: C, 68.01; H, 10.16; N, 1.93. Found: C, 67.90; H,
10.03; N, 1.72.
9976–9977; (e) Ramana, C. V.; Mallik, R.; Gonnade, R. G.; Gurjar, M. K.
Tetrahedron Lett. 2006, 47, 3649–3652; (f) Liu, B.; De Brabander, J. K. Org. Lett.
2006, 8, 4907–4910; (g) Oh, C. H.; Yi, H. J.; Lee, J. H. New J. Chem. 2007, 31, 835–
837; (h) Ramana, C. V.; Patel, P.; Gonnade, R. G. Tetrahedron Lett. 2007, 48,
4771–4774; (i) Messerle, B. A.; Vuong, K. Q. Organometallics 2007, 26, 3031–
3040; (j) Milroy, L.-G.; Zinzalla, G.; Prencipe, G.; Michel, P.; Ley, S. V.;
Gunaratnam, M.; Beltran, M.; Neidle, S. Angew. Chem., Int. Ed. 2007, 46, 2493–
2496; (k) Diéguez-Vázquez, A.; Tzschucke, C. C.; Wing, Y. L.; Ley, S. V. Angew.
Chem., Int. Ed. 2008, 47, 209–212; (l) Zhang, Y.; Xue, J.; Xin, Z.; Xie, Z.; Li, Y.
Synlett 2008, 940–944; (m) Santos, L. L.; Ruiz, V. R.; Sabater, M. J.; Corma, A.
Tetrahedron 2008, 64, 7902–7909.