ginating from the b-agostic form. Therefore only the product
of C–H activation at the b-position can lead to productive
dehydrogenation.
Notes and references
z Crystallographic data. 1: C59H74.6BF24P3Rh, M = 1446.42, mono-
clinic, P21/n (Z = 4), a = 13.1039(6) A, b = 28.652(1) A, c =
17.9634(8) A, b = 106.228(1)1. V = 6475.6(5) A3, T = 120(2) K,
13 255 unique reflections [R(int) = 0.0395]. Final R1 = 0.0455
[I 4 2s(I)]. 4: C59H73BF24P3Rh, M = 1444.80, monoclinic, P21 (Z = 6),
a = 19.3219(2) A, b = 17.7292(2) A, c = 29.0445(3) A, b =
96.6182(4)1. V = 9883.2(2) A3, T = 150(2) K, 31 319 unique
reflections [R(int) = 0.0396]. Final R1 = 0.0506 [I 4 2s(I)].
Fig. 4 Reaction profiles (kcal molꢂ1) for b-H-transfer in 60b.
1 (a) C. M. Jensen, Chem. Commun., 1999, 2443; (b) R. H. Crabtree,
J. Chem. Soc., Dalton Trans., 2001, 2437; (c) A. S. Goldman,
A. H. Roy, Z. Huang, R. Ahuja, W. Schinski and M. Brookhart,
Science, 2006, 312, 257.
2 (a) G. J. Kubas, Metal Dihydrogen and s-Bond Complexes, Kluwer
Academic/Plenum Publishers, New York, 2001; (b) M. Brookhart,
M. L. H. Green and G. Parkin, Proc. Natl. Acad. Sci. U. S. A.,
2007, 104, 6908.
For metallacyclophosphabutane 60c, we were unable to locate
a TS for b-H-transfer to Rh. Scans based on the Rh-bH
distance led to a steady increase in energy to over 30 kcal
molꢂ1 above 60c. TS structures were located but these were
shown to be for a Rh-assisted 1,2 H shift resulting in isomeri-
sation to 60b (E = +31.1 kcal molꢂ1, see ESIw). For 60b,
however, a number of low energy b-H-transfer pathways were
characterised, two of which are shown in Fig. 4. In order to
complete the dehydrogenation process a cis-dihydride must be
formed upon b-H-transfer so that H2 reductive elimina-
tion can be accessed. In Pathway 1 this is achieved by
3 N. M. Scott, R. Dorta, E. D. Stevens, A. Correa, L. Cavallo and
S. P. Nolan, J. Am. Chem. Soc., 2005, 127, 3516.
4 (a) A. C. Albeniz, G. Schulte and R. H. Crabtree, Organometallics,
1992, 11, 242; (b) B. Rybtchinski, L. Konstantinovsky, L. J.
W. Shimon, A. Vigalok and D. Milstein, Chem.–Eur. J., 2000, 6,
3287; (c) D. Buccella and G. Parkin, J. Am. Chem. Soc., 2006, 128,
16358; (d) A. Toner, J. Matthes, S. Gruendemann, H. Limbach,
B. Chaudret, E. Clot and S. Sabo-Etienne, Proc. Natl. Acad. Sci.
U. S. A., 2007, 104, 6945; (e) L. Mole, J. L. Spencer, N. Carr and
A. G. Orpen, Organometallics, 1991, 10, 49.
initial b-H-transfer from 60b to form trans-dihydride 70trans
,
.
(E = +16.7 kcal molꢂ1) followed by isomerisation to 70cis
5 M. Baya, M. L. Buil, M. A. Esteruelas and E. Onate, Organometallics,
2004, 23, 1416–1423.
The cis–trans isomerisation TS is the highest point along
Pathway 1 (E = +25.2 kcal molꢂ1) and corresponds to a
barrier of 19.6 kcal molꢂ1 relative to 10b. Alternatively,
isomerisation of square-pyramidal 60b (where H is apical)
occurs prior to b-H-transfer. The lowest energy mechanism
of this type, Pathway 2, proceeds via a PH3 apical isomer
(60b(PH3), E = +8.9 kcal molꢂ1) from which b-H-transfer
leads to 70cis. The isomerisation TS is the highest point along
Pathway 2 (E = +14.3 kcal molꢂ1) equating to a barrier of
only 8.7 kcal molꢂ1 relative to 10b. A second isomerisation/
b-H-transfer route via isomer 60b(PH3) (with {PH2} apical)
was also defined, Pathway 3. This was energetically intermedi-
ate with regard to Pathways 1 and 2 with an overall barrier of
13.4 kcal molꢂ1, the highest TS being for b-H-transfer at
+19.0 kcal molꢂ1. Full details are given in the ESIw.
To complete the dehydrogenation, reductive elimination of
H2 from 70cis is required and a TS for this process was located
at +15.1 kcal molꢂ1. For Pathway 2 this is the highest point
in the overall process, although for Pathways 1 and 3 this
occurs earlier in the profile (either cis–trans isomerisation or
b-H-transfer, respectively). The model products, 40 + H2,
have a computed relative energy of +9.0 kcal molꢂ1, although
the entropy associated with H2 dissociation means that the free
energy of the products is only +2.9 kcal molꢂ1 above 10b,
consistent with the reversibility of the dehydrogenation.
In conclusion we report a ‘‘14-electron’’ T-shaped Rh(I)
complex with a supporting b-agostic interaction from an
isopropyl phosphine that spontaneously undergoes dehydro-
genation (C–H activation followed by b-H-transfer). Calcula-
tions show that while both g- and b-agostic interactions can
undergo reversible C–H activation to give metallacycle inter-
mediates, subsequent H-transfer is only accessible when ori-
6 P. B. Glaser and T. D. Tilley, Organometallics, 2004, 23, 5799.
7 A. J. Edwards, M. A. Esteruelas, F. J. Lahoz, A. M. Lopez, E. Onate,
L. A. Oro and J. I. Tolosa, Organometallics, 1997, 16, 1316.
8 (a) D. L. Thorn, Organometallics, 1998, 17, 348; (b) N. Thirupathi,
D. Amoroso, A. Bell and J. D. Protasiewicz, Organometallics,
2005, 24, 4099.
9 M. J. Ingleson, M. F. Mahon and A. S. Weller, Chem. Commun.,
2004, 2398.
10 S. Brayshaw, J. Green, G. Kociok-Kohn, E. Sceats and
¨
A. S. Weller, Angew. Chem., Int. Ed., 2006, 45, 452.
11 W. Baratta, C. Mealli, E. Herdtweck, A. Ienco, S. A. Mason and
P. Rigo, J. Am. Chem. Soc., 2004, 126, 5549.
12 (a) H. Urtel, C. Meier, F. Eisentrager, F. Rominger, J. P. Joschek
and P. Hofmann, Angew. Chem., Int. Ed., 2001, 40, 781; (b) P. H.
M. Budzelaar, N. N. P. Moonen, R. de Gelder, J. M. M. Smits and
A. W. Gal, Eur. J. Inorg. Chem., 2000, 753; (c) W. Baratta,
S. Stoccoro, A. Doppiu, E. Herdtweck, A. Zucca and P. Rigo,
Angew. Chem., Int. Ed., 2003, 42, 105; (d) A. Y. Verat, M. Pink,
H. Fan, J. Tomaszewski and K. G. Caulton, Organometallics,
2008, 27, 166, and references therein.
13 Y. W. Yared, S. L. Miles, R. Bau and C. A. Reed, J. Am. Chem.
Soc., 1977, 99, 7076.
14 H. Aneetha, M. Jimenez-Tenorio, M. C. Puerta, P. Valerga,
V. N. Sapunov, R. Schmid, K. Kirchner and K. Mereiter,
Organometallics, 2002, 21, 5334.
15 A. C. Cooper, E. Clot, J. C. Huffman, W. E. Streib, F. Maseras,
O. Eisenstein and K. G. Caulton, J. Am. Chem. Soc., 1999, 121,
97–106.
16 (a) T. M. Douglas and A. S. Weller, New J. Chem., 2008, 32,
966; (b) T. M. Douglas, S. K. Brayshaw, R. Dallanegra,
G. Kociok-Kohn, S. A. Macgregor, G. Moxham, A. S. Weller,
¨
T. Wondimagegn and P. Vadivelu, Chem.–Eur. J., 2008, 14, 1004;
(c) T. M. Douglas, H. Le Notre, S. K. Brayshaw, C. G. Frost and
A. S. Weller, Chem. Commun., 2006, 3408.
17 Calculations employed Gaussian 03 with the BP86 functional. Rh
and P centres were described with Stuttgart RECPs and basis sets
with polarisation on P. 6-31G** basis sets were used for C and H
atoms. All energies include a correction for zero-point energies. See
ESIw for full details.
ꢁc
This journal is The Royal Society of Chemistry 2009
246 | Chem. Commun., 2009, 244–246