2422
A. ICHIKAWA and H. ONO
and CH2Cl2 (0.5 ml). This procedure yielded a 1:1
mixture of diastereomeric esters 6 and 7 (total 63.3 mg,
total 178 mmol, total 93% yield). This esterification
procedure was repeated, and the resulting mixture of
esters was purified by HPLC in a silica SG80 column
Acknowledgments
We thank Ms. Ikuko Maeda for obtaining the NMR
spectra. We also thank an anonymous referee for a
helpful suggestion on the chemical shift differences in
the 13C-NMR spectra.
(250 mm ꢀ 10 mm I.D.), yielding esters
6 (50 mg,
>99% de) and 7 (46 mg, >99% de) as colorless oils.
The mobile phase consisted of hexane/EtOAc (193:7) at
a flow rate of 3 ml/min. The injected amount for each
operation was ca. 1 mg.
References
1) Mori, K., Molecular asymmetry and pheromone science.
Biosci. Biotechnol. Biochem., 60, 1925–1932 (1996).
2) Imaizumi, K., Terasima, H., Akasaka, K., and Ohrui, H.,
Highly potent chiral labeling reagents for the discrim-
ination of chiral alcohols. Anal. Sci., 19, 1243–1249
(2003).
(S)-1-Isobutylpentyl (S)-2-methoxy-2-(1-naphthyl)-
26
propanoate (6). ½ꢀꢂD +9.3 (c 0.451, EtOH); NMR ꢂH
(500 MHz, CDCl3): 0.40 (3H, d, J ¼ 6 Hz), 0.42 (3H, d,
J ¼ 6 Hz), 0.59 (1H, m), 0.82 (3H, t, J ¼ 7 Hz), 0.92
(1H, ddd, J ¼ 14, 9, 4 Hz), 1.10–1.29 (4H, m), 1.13 (1H,
m), 1.35–1.50 (2H, m), 2.00 (3H, s), 3.12 (3H, s), 4.88
(1H, m), 7.44 (1H, m), 7.46 (1H, m), 7.46 (1H, m), 7.60
(1H, dd, J ¼ 7, 1 Hz), 7.81 (1H, br d, J ¼ 8 Hz), 7.83
(1H, m), 8.48 (1H, m); NMR ꢂC (126 MHz, CDCl3):
13.96, 21.36, 21.64, 22.55, 22.97, 23.73, 27.21, 34.21,
42.76, 50.84, 73.77, 81.54, 124.58, 125.52, 125.64,
125.71, 126.35, 128.52, 129.27, 131.53, 134.04, 135.17,
173.69; IR (KBr, CHCl3) cmꢁ1: 2959, 2936, 1732, 1261,
1138, 1123; LC-MS (ESI, MeCN:H2O = 9:1) m/z: 379
(½M þ Naꢂþ, 100%), 199 (10).
3) Fukushi, Y., Development and application of new
methods for NMR structure analyses using axially chiral
ˆ
reagents. Nippon Nogeikagaku Kaishi (in Japanese), 72,
1345–1351 (1998).
4) Kuwahara, S., Naito, J., Yamamoto, Y., Kasai, Y., Fujita,
T., Noro, K., Shimanuki, K., Akagi, M., Watanabe, M.,
Matsumoto, T., Watanabe, M., Ichikawa, A., and Harada,
N., Crystalline-state conformational analysis of MꢀNP
esters, powerful resolution and chiral 1H NMR aniso-
tropy tools. Eur. J. Org. Chem., 1827–1840 (2007).
5) Ichikawa, A., and Ono, H., Preparation of single-
enantiomer 2-methyl-4-heptanol, a pheromone of Meta-
masius hemipterus, using (S)-2-methoxy-2-(1-naphthyl)-
propionic acid. J. Chromatogr. A, 1117, 38–46 (2006).
6) MacLeod, G., and Ames, J. M., Volatile components of
starfruit. Phytochemistry, 29, 165–172 (1990).
7) Flath, R. A., Cunningham, R. T., Liquido, N. J., and
McGovern, T. P., Alpha-ionol as attractant for trapping
Bactrocera latifrons (Diptera: Tephritidae). J. Econ.
Entomol., 87, 1470–1476 (1994).
8) Ramirez-Lucas, P., Malosse, C., Ducrot, P. H., Lettere,
M., and Zagatti, P., Chemical identification, electro-
physiological and behavioral activities of the pheromone
of Metamasius hemipterus (Coleoptera: Curculionidae).
Bioorg. Med. Chem., 4, 323–330 (1996).
9) Zarbin, P. H. G., Arrigoni, E. D. B., Reckziegel, A.,
Moreira, J. A., Baraldi, P. T., and Vieira, P. C.,
Identification of male-specific chiral compound from
the sugarcane weevil Sphenophorus levis. J. Chem.
Ecol., 29, 377–386 (2003).
10) Noyori, R., Tomino, I., Yamada, M., and Nishizawa, M.,
Synthetic applications of the enantioselective reduction
by binaphthol-modified lithium alminum hydride re-
agents. J. Am. Chem. Soc., 106, 6717–6725 (1984).
11) Wada, A., Sakai, M., Kinumi, T., Tsujimoto, K.,
Yamauchi, M., and Ito, M., Conformational study of
retinochrome chromophore: synthesis of 8,18-ethanor-
etinal and a new retinochrome analog. J. Org. Chem., 59,
6922–6927 (1994).
(R)-1-Isobutylpentyl (S)-2-methoxy-2-(1-naphthyl)-
27
propanoate (7). ½ꢀꢂD ꢁ9:0 (c 0.431, EtOH); NMR ꢂH
(500 MHz, CDCl3): 0.40 (1H, m), 0.49 (3H, t, J ¼ 7 Hz),
0.52 (1H, m), 0.72–0.81 (2H, m), 0.83 (3H, d, J ¼ 7 Hz),
0.83 (3H, d, J ¼ 7 Hz), 1.10–1.17 (2H, m), 1.12 (1H, m),
1.40 (1H, ddd, J ¼ 14, 9, 5 Hz), 1.46 (1H, m), 1.99 (3H, s),
3.09 (3H, s), 4.94 (1H, m), 7.45 (1H, m), 7.46 (1H, m),
7.46 (1H, m), 7.60 (1H, dd, J ¼ 7, 1 Hz), 7.82 (1H, br d,
J ¼ 8 Hz), 7.83 (1H, m), 8.48 (1H, m); NMR ꢂC (126
MHz, CDCl3): 13.64, 21.57, 22.12, 22.22, 23.13, 24.55,
26.16, 33.70, 42.85, 50.78, 73.61, 81.46, 124.59, 125.50,
125.70, 125.75, 126.38, 128.53, 129.33, 131.52, 134.03,
135.15, 173.75; IR (KBr, CHCl3) cmꢁ1: 2959, 2936,
1732, 1261, 1138, 1123; LC-MS (ESI, MeCN:H2O =
9:1) m/z: 379 (½M þ Naꢂþ, 100%), 199 (9).
Preparation of (S)-3. See the procedure for the
preparation of (R)-2 for details. The materials used
were ester 6 (50 mg, ca. 140 mmol) and 28% NaOMe/
MeOH (1.5 ml). The reaction time was 7 h, and the
temperature was 70 ꢃC. This procedure yielded (S)-3
24
(20.5 mg, 142 mmol, quantitative yield, ½ꢀꢂD +11 (c
0.205, MeOH)) and (S)-1 (21.1 mg, 92 mmol, 65% yield).
Preparation of (R)-3. See the procedure for the
preparation of (R)-2 for details. The materials used were
ester 7 (45.5 mg, 128 mmol) and 28% NaOMe/MeOH
(1.5 ml). The reaction time was 6 h, and the temperature
was 70 ꢃC. This procedure yielded (R)-3 (15.7 mg,
12) Takenaka, M., Takikawa, H., and Mori, K., Synthesis of
the enantiomers of 2-methyl-4-heptanol and 2-methyl-4-
octanol, the pheromone components of the West Indian
sugarcane borer. Liebigs Ann. Chem., 1963–1964 (1996).
26
109 mmol, 85% yield, ½ꢀꢂD ꢁ11 (c 0.157, MeOH))
and (S)-1 (18.5 mg, 80 mmol, 63% yield).