Journal of the American Chemical Society
Page 4 of 6
1
2
3
4
5
6
7
8
2014, 510, 485. (j) Flanigan, D. M.; Romanov-Michailidis, F.;
White, N. A.; Rovis, T. Chem. Rev. 2015, 115, 9307.
both cases after 1h). In the subsequent addition of alcohol 2 to the
azolium ester intermediates, the intermediate (R)-I' reacted much
faster than (S)-I' (Scheme 1d, “step 2” and “step 2'). These studies
(Scheme 1d) suggest that the final step of ester formation is the
asymmetric step, and the overall process is a dynamic kinetic
resolution. The key step of alcohol addition to the acylazolium
ester intermediate was also evaluated via DFT calculation
(Scheme 1e). The calculation revealed that the energy of the addi-
tion of alcohol 2 to intermediate (S)-I is 5.02 kcal/mol higher
than that of alcohol 2 adding to the intermediate (R)-I, which is in
consistence with our experimental observations.
(3) (a) Sohn, S.; Bode, J. W. Org. Lett. 2005, 7, 3873. (b) Chan, A.;
Scheidt, K. A. Org. Lett. 2005, 7, 905. (c) Burstein, C.; Tschan, S.;
Xie, X.; Glorius, F. Synthesis 2006, 14, 2418. (d) Maki, B. E.;
Scheidt, K. A. Org. Lett. 2008, 10, 4331. (d) Yatham, V. R.; Harny-
ing, W.; Kootz, D.; Neudörfl, J.-M.; Schlörer, N.; Berkesel, A. J.
Am. Chem. Soc., 2016, 138, 2670.
(4) Alpha-halogenated aldehyde could be transformed to enantiomeri-
cally enriched carboxylic acid/esters, as pioneered by Rovis, see: (a)
Reynolds, N. T.; Rovis, T. J. Am. Chem. Soc., 2005, 127, 16406; (b)
Vora, H. U.; Rovis, T. J. Am. Chem. Soc., 2010, 132 , 2860.; Enan-
tiomerically enriched β,β-disubstituted carboxylic acid/esters could
be achieved via NHC-catalyzed β-protonation, see: (c) Wang, M. H.;
Cohen, D. T.; Schwamb, C. B.; Mishra, R. K.; Scheidt, K. A. J. Am.
Chem. Soc., 2015, 137 , 5891.
(5) (a) Hodous, B. L.; Ruble, J. C.; Fu, G. C. J. Am. Chem. Soc. 1999,
121, 2637. Also see review: (b) Fu, G. C. Acc. Chem. Res. 2000, 33,
412.
(6) (a) Wang, X.-N.; Lv, H.; Huang, X.-L.; Ye, S. Org. Biomol. Chem.,
2009, 7, 346. (b) Concellón, C.; Duguet, N.; Smith, A. D. Adv.
Synth. Catal. 2009, 351, 3001.
(7) (a) Hao, L.; Du, Y.; Lv, H.; Chen, X.; Jiang, H.; Shao, Y.; Chi, Y.
R. Org. Lett. 2012, 14, 2154. (b) Chen, S.; Hao, L.; Zhang, Y.; Ti-
wari, B.; Chi, Y. R. Org. Lett. 2013, 15, 5822. (c) Hao, L.; Chen,
S.; Xu, J.; Tiwari, B.; Fu, Z.; Li, T.; Lim, J.; Chi, Y. R. Org. Lett.
2013, 15, 4956. (d) Fu, Z.; Xu, J.; Zhu, T.; Leong, W. W. Y.; Chi,
Y. R. Nat. Chem. 2013, 5, 835. (e) Cheng, J.; Huang, Z.; Chi, Y. R.
Angew. Chem., Int. Ed. 2013, 52, 8592. (f) Xu, J.; Jin, Z.; Chi, Y. R.
Org. Lett. 2013, 15, 5028. (g) Fu, Z.; Jiang, K.; Zhu, T.; Torres, J.;
Chi, Y. R. Angew. Chem.; Int. Ed. 2014, 53, 6506. (h) Hao, L.;
Chen, X.; Chen, S.; Jiang, K.; Torres, J.; Chi, Y. R. Org. Chem.
Front. 2014, 1, 148. (i) Jin, Z.; Chen, S. J.; Wang, Y.; Zheng, P.;
Yang, S.; Chi, Y. R. Angew. Chem.; Int. Ed. 2014, 53, 13506.
(8) (a) Ryan, S. J.; Candish, L.; Lupton, D. W. J. Am. Chem. Soc. 2009,
131, 14176. (b) Candish, L.; Lupton, D. W. Org. Biomol.
Chem. 2011, 9, 8182. (c) Candish, L.; Lupton, D. W. Chem. Sci.
2012, 3, 380. (d) Candish, L.; Levens, A.; Lupton, D. W.; J. Am.
Chem. Soc. 2014, 136, 14397. (e) Candish, L.; Levens, A.; Lupton,
D. W. Chem. Sci. 2015, 6, 2366. (f) Levens, A.; Zhang, C.; Candish,
L.; Forsyth, C. M.; Lupton, D. W. Org. Lett. 2015, 17, 5332.
(9) For NHC-catalyzed kinetic resolution of secondary alcohols, see: (a)
Suzuki, Y.; Yamauchi, K.; Muramatsu, K.; Sato, M. Chem. Com-
mun., 2004, 2770. (b) Kano, T.; Sasaki, K.; Maruoka, K. Org. Lett.
2005, 7, 1347. (c) DeꢀSarkar, S.; Biswas, A.; Song, C. H.; Studer, A.
Synthesis 2011, 1974. (d) Kuwano, S.; Harada, S.; Kang, B.; Oriez,
R.; Yamaoka, Y.; Takasu, K.; Yamada, K.-i. J. Am. Chem. Soc.
2013, 135, 11485. (e) Lu, S.; Poh, S. B.; Siau, W.-Y.; Zhao, Y. An-
gew. Chem., Int. Ed. 2013, 52, 1731. (f) Lu, S.; Poh, S. B.; Zhao, Y.
Angew. Chem., Int. Ed. 2014, 53, 11041. For NHC-catalyzed kinet-
ic resolution with other substrates, see: (g) Li, G.-Q.; Li, Y.; Dai,
L.-X.; You, S.-L. Adv. Synth. Catal. 2008, 350, 1258. (h) Binanzer,
M.; Hsieh, S.-Y.; Bode, J. W. J. Am. Chem. Soc. 2011, 133, 19698.
(10) (a) Breslow, R. J. Am. Chem. Soc. 1958, 80, 3719. (b) DiRocco, D.
A.; Oberg, K. M.; Rovis, T. J. Am. Chem. Soc. 2012, 134, 6143. (c)
Maji, B.; Mayr, H. Angew. Chem.; Int. Ed. 2012, 51, 10408. (d)
Berkessel, A.; Elfert, S.; Yatham, V. R.; Neudörfl, J.-M.; Schlörer,
N. E.; Teles, J. H. Angew. Chem., Int. Ed. 2012, 51, 12370.
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
In summary, we have developed a carbene-catalyzed reaction
of esters that offers useful synthetic solutions which are not readi-
ly accessible from the conventional reactions based on aldehyde
substrates. Our approach, through dynamic kinetic resolution of
carboxylic esters, allows for effective access to the broadly useful
α,α-disubstituted carboxylic esters with up to 99:1 er and 99%
yield. The present study clearly illustrates the unique power of
carbene-catalyzed activation and reaction of carboxylic esters, and
shall encourage further development of new activation modes.
ASSOCIATED CONTENT
Supporting Information
Experimental procedures and spectral data for all new com-
pounds. This material is available free of charge via the Internet at
AUTHOR INFORMATION
Corresponding Author
Notes
The authors declare no competing financial interests.
ACKNOWLEDGMENT
We acknowledge financial support by the Singapore National
Research Foundation, GlaxoSmithKline, the Ministry of Educa-
tion of Singapore, Nanyang Technological University, China’s
National Key program for Basic Research (No. 2010CB 126105),
Thousand Talent Plan, NSF of China (No. 21132003; No.
21472028), Guizhou Province Returned Oversea Student Science
and Technology Activity Program, Science and Technology De-
partment of Guizhou Province, and Guizhou University.
REFERENCES
(1) (a) Harrison, I. T.; Lewis, B.; Nelson, P.; Rooks, W.; Roszkowski,
A.; Tomolonis, A.; Fried, J. H. J. Med. Chem. 1970, 13, 203. (b)
Shen, T. Y. Angew. Chem., Int. Ed. 1972, 11, 460. (c) Lednicer, D.;
Mitscher, L. A. The Organic Chemistry of Drug Synthesis, Wiley,
New York, 1977,vol. 1.
(2) For selected recent reviews on NHC catalysis, see: (a) Zeitler, K.
Angew. Chem., Int. Ed. 2005, 44, 7506. (b) Enders, D., Niemeier,
O.; Henseler, A. Chem. Rev. 2007, 107, 5606; (c) Nair, V.; Menon,
R. S.; Biju, A. T.; Sinu, C. R.; Paul, R. R.; Jose, A.; Sreekumar, V.
Chem. Soc. Rev. 2011, 40, 5336. (d) Douglas, J.; Churchill, G.;
Smith, A. D. Synthesis 2012, 44, 2295. (e) Cohen, D. T.; Scheidt, K.
A. Chem. Sci. 2012, 3, 53. (f) Ryan, S. J.; Candish, L.; Lupton, D.
W. Chem. Soc. Rev. 2013, 42, 4906. (g) De Sarkar, S.; Biswas, A.;
Samanta, R. C.; Studer, A. Chem. Eur. J. 2013, 19, 4664. (h) Ma-
hatthananchai, J.; Bode, J. W. Acc. Chem. Res. 2014, 47, 696. (i)
Hopkinson, M. N.; Richter, C.; Schedler, M.; Glorius, F. Nature
(11) (a) Cohen, D. T.; Eichman, C. C.; Phillips, E. M.; Zarefsky, E. R.;
Scheidt, K. A. Angew. Chem., Int. Ed. 2012, 51, 7309. For full arti-
cle, see: (b) Johnston, R. C.; Cohen, D. T.; Eichman, C. C.; Scheidt,
K. A.; Cheong, P. H.-Y. Chem. Sci. 2014, 5, 1974. (c) Goodman, C.
G.; Johnson, J. S. J. Am. Chem. Soc. 2014, 136, 14698. (d) Wang,
M.; Huang, Z.; Xu, J.; Chi, Y. R. J. Am. Chem. Soc. 2014, 136,
1214. (e) Wu, Z.; Li, F.; Wang, J. Angew. Chem., Int. Ed. 2015, 54,
1629. (f) Goodman, C. G.; Walker, M. M.; Johnson, J. S. J. Am.
Chem. Soc., 2015, 137 , 122. (g) Zhao, C.-G.; Li, F.-Y.; Wang, J.
Angew. Chem., Int., Ed. 2016, 55, 1820
(12) (a) Reynolds, N. T.; Read de Alaniz, J.; Rovis, T. J. Am. Chem.
Soc. 2004, 126, 9518. (b) Knight, R. L.; Leeper, F. J. J. Chem. Soc.
Perkin Trans. 1 1998, 1891. (c) Chiang, P.-C.; Rommel, M.; Bode,
J. W. J. Am. Chem. Soc. 2009, 131, 8714.
ACS Paragon Plus Environment