Letters
Journal of Medicinal Chemistry, 2009, Vol. 52, No. 4 915
Okuyama, S.; Kawashima, N.; Hori, S.; Takimoto, M.; Wada, K.
Epilepsy and exacerbation of brain injury in mice lacking the glutamate
transporter GLT-1. Science 1997, 276, 1699–1702.
site for Glu and Asp, or are negative allosteric (noncompetitive)
modulators inhibiting the uptake through EAAT1 via binding
to other regions in the transporter is currently under investigation.
It is important to stress that the 25 analogues only have been
characterized pharmacologically at three of the five EAAT
subtypes. Thus, we cannot exclude the possibility that the
compounds in addition to their EAAT1 activity could target
EAAT4 and/or EAAT5. However, the EAAT1-3 and EAAT4,5
subtypes make up two distinct subgroups within the EAAT
family in terms of transporter function and ion conductance,
despite the fact that a 50-60% sequence homology exists
between all of the subtypes.3,9,10 We are currently investigating
whether 1o and other compounds in the series target EAAT4,
the fourth CNS EAAT subtype. Nevertheless, we find it very
unlikely that a compound exhibiting >400-fold selectivity for
one subtype within the EAAT1-3 subgroup would possess any
significant activity at EAAT4,5.
In conclusion, we have presented the first class of compounds
that show fully selective inhibition of the human EAAT1
subtype over EAAT2 and EAAT3. A SAR was built from the
pharmacological investigation of 25 analogues, varying the
substituents in the 4- and 7-positions of the parental skeleton:
2-amino-5-oxo-5,6,7,8-tetrahydro-4H-chromene-3-carboni-
trile. From this study, we have shown that the presence of an
aromatic ring in the 7-position (R1-substituent) is crucial for
the inhibitory activity at EAAT1. On the other hand, the
4-position (R2-substituent) may accommodate small and larger
groups, not being restricted to aromatics only, although a
substituent in this position is mandatory. The most potent
analogue in the series, 1o, displayed high nanomolar inhibitory
activity (IC50 ) 0.66 µM) at EAAT1, with more than 400-fold
selectivity compared to EAAT2 and EAAT3. This selectivity
profile was also observed at the rat orthologues, which in all
makes 1o a highly attractive pharmacological tool for future
explorations of the physiological role of the EAAT1 subtype.
Expansion of the SAR, studies addressing the bioavailability
and pharmacokinetic properties of 1o, and detailed investigations
of its binding mode at EAAT1 are all ongoing projects in our
laboratories.
(7) Storck, T.; Schulte, S.; Hofmann, K.; Stoffel, W. Structure, expression,
and functional analysis of a Na(+)-dependent glutamate/aspartate
transporter from rat brain. Proc. Natl. Acad. Sci. U.S.A. 1992, 89,
10955–10959.
(8) Massie, A.; Cnops, L.; Smolders, I.; McCullumsmith, R.; Kooijman,
R.; Kwak, S.; Arckens, L.; Michotte, Y. High-affinity Na+/K+-
dependent glutamate transporter EAAT4 is expressed throughout the
rat fore- and midbrain. J Comp. Neurol. 2008, 511, 155–72.
(9) Fairman, W. A.; Vandenberg, R. J.; Arriza, J. L.; Kavanaugh, M. P.;
Amara, S. G. An excitatory amino-acid transporter with properties of
a ligand-gated chloride channel. Nature 1995, 375, 599–603.
(10) Arriza, J. L.; Eliasof, S.; Kavanaugh, M. P.; Amara, S. G. Excitatory
amino acid transporter 5, a retinal glutamate transporter coupled to a
chloride conductance. Proc. Natl. Acad. Sci. U.S.A. 1997, 94, 4155–
4160.
(11) Niswender, C. M.; Jones, C. K.; Conn, P. J. New therapeutic frontiers
for metabotropic glutamate receptors. Curr. Top. Med. Chem. 2005,
5, 847–857.
(12) Bra¨uner-Osborne, H.; Egebjerg, J.; Nielsen, E. Ø.; Madsen, U.;
Krogsgaard-Larsen, P. Ligands for glutamate receptors: design and
therapeutic prospects. J. Med. Chem. 2000, 43, 2609–2645.
(13) Bunch, L.; Krogsgaard-Larsen, P. Subtype selective kainic acid receptor
agonists: discovery and approaches to rational design. Med. Res. ReV.
2009, 29, 3-28.
(14) Campiani, G.; Fattorusso, C.; De Angelis, M.; Catalanotti, B.; Butini,
S.; Fattorusso, R.; Fiorini, I.; Nacci, V.; Novellino, E. Neuronal high-
affinity sodium-dependent glutamate transporters (EAATs): targets for
the development of novel therapeutics against neurodegenerative
diseases. Curr. Pharm. Des. 2003, 9, 599–625.
(15) Bridges, R. J.; Esslinger, C. S. The excitatory amino acid transporters:
pharmacological insights on substrate and inhibitor specificity of the
EAAT subtypes. Pharmacol. Ther. 2005, 107, 271–285.
(16) Stensbøl, T. B.; Uhlmann, P.; Morel, S.; Eriksen, B. L.; Felding, J.;
Kromann, H.; Hermit, M. B.; Greenwood, J. R.; Bräuner-Osborne,
H.; Madsen, U.; Junager, F.; Krogsgaard-Larsen, P.; Begtrup, M.;
Vedsø, P. Novel 1-hydroxyazole bioisosteres of glutamic acid.
Synthesis, protolytic properties, and pharmacology. J. Med. Chem.
2002, 45, 19–31.
(17) Arriza, J. L.; Fairman, W. A.; Wadiche, J. I.; Murdoch, G. H.;
Kavanaugh, M. P.; Amara, S. G. Functional comparisons of three
glutamate transporter subtypes cloned from human motor cortex.
J. Neurosci. 1994, 14, 5559–5569.
(18) Vandenberg, R. J.; Mitrovic, A. D.; Chebib, M.; Balcar, V. J.; Johnston,
G. A. R. Contrasting modes of action of methylglutamate derivatives
on the excitatory amino acid transporters, EAAT1 and EAAT2. Mol.
Pharmacol. 1997, 51, 809–815.
(19) Alaux, S.; Kusk, M.; Sagot, E.; Bolte, J.; Jensen, A. A.; Bräuner-
Osborne, H.; Gefflaut, T.; Bunch, L. Chemoenzymatic synthesis of a
series of 4-substituted glutamate analogues and pharmacological
characterization at human glutamate transporters subtypes 1-3. J. Med.
Chem. 2005, 48, 7980–7992.
(20) Jensen, A. A.; Bra¨uner-Osborne, H. Pharmacological characterization
of human excitatory amino acid transporters EAAT1, EAAT2 and
EAAT3 in a fluorescence-based membrane potential assay. Biochem.
Pharmacol. 2004, 67, 2115–2127.
Acknowledgment. We thank the Lundbeck Foundation, the
Carlsberg Foundation, and the Danish Research Council for
financial support. Drs. S. G. Amara and T. Rauen are thanked
for their generous gifts of cDNAs for the human and rat EAATs,
respectively. Shahrokh Padrah is thanked for technical assistance
regarding synthetic work.
(21) Shimamoto, K.; LeBrun, B.; Yasuda-Kamatani, Y.; Sakaitani, M.;
Shigeri, Y.; Yumoto, N.; Nakajima, T. dl-threo-beta-Benzyloxyas-
partate, a potent blocker of excitatory amino acid transporters. Mol.
Pharmacol. 1998, 53, 195–201.
(22) Klokol, G. V.; Krivokolysko, S. G.; Dyachenko, V. D.; Litvinov, V. P.
Aliphatic aldehydes in the synthesis of condensed 4-alkyl(cycloalkyl)-
2-amino-3-cyano-4H-pyrans. Khim. Geterotsikl. Soedin. 1999, 1363–
1366.
Supporting Information Available: Experimental procedures
for the synthesis of analogues 1c,n,o,w and for the pharmacological
assays. This material is available free of charge via the Internet at
References
(1) Danbolt, N. C. Glutamate uptake. Prog. Neurobiol. 2001, 65, 1–105.
(2) Kanai, Y.; Hediger, M. A. The glutamate/neutral amino acid transporter
family SLC1: molecular, physiological and pharmacological aspects.
Pfluegers Arch. 2004, 447, 469–479.
(3) Beart, P. M.; O’Shea, R. D. Transporters for L-glutamate: an update
on their molecular pharmacology and pathological involvement. Br. J.
Pharmacol. 2007, 150, 5–17.
(4) Maragakis, N. J.; Rothstein, J. D. Glutamate transporters: animal
models to neurologic disease. Neurobiol. Dis. 2004, 15, 461–473.
(5) Furata, A.; Rothstein, J. D.; Martin, L. J. Glutamate transporter protein
subtypes are expressed differentially during rat CNS development.
J. Neurosci. 1997, 17, 8363–8375.
(6) Tanaka, K.; Watase, K.; Manabe, T.; Yamada, K.; Watanabe, M.;
Takahashi, K.; Iwama, H.; Nishikawa, T.; Ichihara, N.; Kikuchi, T.;
(23) Jin, T. S.; Wang, A. Q.; Wang, X.; Zhang, J. S.; Li, T. S. A clean
one-pot synthesis of tetrahydrobenzo[b]pyran derivatives catalyzed by
hexadecyltrimethyl ammonium bromide in aqueous media. Synlett
2004, 871–873.
(24) Balalaie, S.; Bararjanian, M.; Sheikh-Ahmadi, M.; Hekmat, S.; Salehi,
P. Diammonium hydrogen phosphate: an efficient and versatile catalyst
for the one-pot synthesis of tetrahydrobenzo[b]pyran derivatives in
aqueous media. Synth. Commun. 2007, 37, 1097–1108.
(25) Devi, I.; Bhuyan, P. J. Sodium bromide catalysed one-pot synthesis
of tetrahydrobenzo[b]pyrans via a three-component cyclocondensation
under microwave irradiation and solvent free conditions. Tetrahedron
Lett. 2004, 45, 8625–8627.
JM8013458