Scheme 1
.
Ru-Catalyzed Synthesis and 6πe- Electrocyclization
of 1,3,5-Hexatrienylbenzenes 3
Scheme 2. Thermal [1,5]-Hydrogen Shift of
1,3,5-Cyclooctatrienes 5g and 9f to 1,3,6-Cyclooctatrienes 6g
and 10f
Table 1. Ru-Catalyzed Cascade Reaction of 1,6-Diyne 1a with
[(Z)-1-Propenyl]arenes 2
cyclohexadiene 4a was obtained selectively and quantita-
tively as the product of the thermal 6πe- electrocyclization
(Scheme 1). Not unexpectedly, the same reactivity was
observed when an electron-rich (3b) or an electron-poor (3c)
hexatrienylbenzene was heated, thus showing that the
electronic richness of the aromatic moiety does not affect
the peri selectivity of the electrocyclization reaction.
Interestingly, the electrocyclic peri selectivity changed
when other aromatic nuclei were present in the starting
polyene. For example, when 1-(hexatrienyl)naphthalene 3d6
was heated under reflux in toluene, 1,3,6-cyclooctatriene 6d
was selectively obtained in quantitative yield (56% overall
yield, entry 1, Table 1).7 The cyclooctatriene most probably
arises from a thermal conrotatory 8πe- electrocyclization,
followed by a [1,5]-hydrogen shift to allow the aromaticity
of the naphthalene ring to be recovered.8 When isomeric
2-(propenyl)naphthalene 2e and 2-(propenyl)anthracene 2f9
were used in the Ru-catalyzed linear coupling with 1a, the
(6) 1,3,5-Hexatrienylarenes 3 were obtained by Ru-catalyzed linear
coupling of diynes 1 and (Z)-1,3-dienes 2, while (E)-1,3-dienes 2 failed to
give the linear coupling reaction. See ref 4 for more details and Supporting
Information for X-ray data for compound 3a.
(7) For reviews on metal-mediated cyclooctanoid construction, see: (a)
Yet, L. Chem. ReV. 2000, 100, 2963. (b) Mehta, G.; Singh, V. Chem. ReV.
1999, 99, 881. For [2 + 2 + 2 + 2] cycloadditions, see: (c) Wender, P. A.;
Christy, J. P. J. Am. Chem. Soc. 2007, 129, 13402. (d) Bouissie, T. R.;
Streitwieser, A. J. Org. Chem. 1993, 58, 2377. (e) Walther, D.; Braun, D.;
Schulz, W.; Rosenthal, U. Z. Anorg. Allg. Chem. 1998, 577, 270. (f) Diercks,
R.; Stamp, L.; tom Dieck, H. Chem. Ber. 1984, 117, 1913. For [4 + 2 +
2] cycloadditions, see: (g) DeBoef, B.; Counts, W. R.; Gilbertson, S. R. J.
Org. Chem. 2007, 72, 799. (h) Wender, P. A.; Christy, J. P. J. Am. Chem.
Soc. 2006, 128, 5354. (i) Murakami, M.; Ashida, S.; Matsuda, T. J. Am.
Chem. Soc. 2006, 128, 2166. (j) Baik, M. H.; Baum, E. W.; Burland, M. C.;
Evans, P. A. J. Am. Chem. Soc. 2005, 127, 1602. For [5 + 2+1]
cycloadditions, see: (k) Wang, Y.; Wang, J.; Su, J.; Huang, F.; Jiao, L.;
Liang, Y.; Yang, D.; Zhang, S.; Wender, P. A.; Yu, Z. X., J. Am. Chem.
Soc. 2007, 129, 10060. For [4 + 4] cycloadditions, see: (l) Murakami, M.;
Itami, K.; Ito, Y. Synlett 1999, 951. (m) Sieburth, S. M.; Cunard, N. T.
Tetrahedron 1996, 52, 6251. (n) Baldenius, K.-U.; tom Dieck, H.; Ko¨ning,
W. A.; Icheln, D.; Runge, T. Angew. Chem., Int. Ed. Engl. 1992, 31, 305.
(o) Wender, P. A.; Ihle, N. C. J. Am. Chem. Soc. 1986, 108, 4678. For [6
+ 2] cycloadditions, see: (p) Tenaglia, A.; Gaillard, S. Angew. Chem., Int.
Ed. 2008, 47, 2454. (q) Wender, P. A.; Correa, A. G.; Sato, Y.; Sun, R.
J. Am. Chem. Soc. 2000, 122, 7815. (r) Achard, M.; Mosrin, M.; Tenaglia,
A.; Buono, G. J. Org. Chem. 2006, 71, 2907.
a Isolated yields from reactions performed at 80 °C by slow addition,
over 4 h, of 0.5 mmol of 1a in DMF to a mixture of 3 equiv of 2, 10%
Et4NCl, and 10% [Cp*Ru(CH3CN)3]PF6 in DMF. X ) C(CO2Me)2.
expected to cyclize to 1,3,5-cyclooctatriene with complete
peri selectivity.
However, we found that when (1Z,3Z)-1,3,5-hexatrienyl-
benzene 3a6 (which can be seen as an (3Z,5Z)-1,3,5,7-
octatetraene being one of the terminal double bonds part of
the benzene ring) was heated under reflux in toluene,
984
Org. Lett., Vol. 11, No. 4, 2009