Paper
RSC Advances
DMSO) d 12.89 (br. s, 1H), 9.61 (s, 1H), 8.52 (dd, J ¼ 8.0, 1.2 Hz, yl)-2,5-diphenyl tetrazolium bromide) (Sigma, Bornem, Bel-
1H), 8.35 (d, J ¼ 8.4 Hz, 1H), 8.15 (dd, J ¼ 8.3, 0.6 Hz, 1H), 7.70– gium) mitochondrial reduction into formazan by living cells.
7.79 (m, 3H), 7.38 (dd, J ¼ 8.4, 1.9 Hz, 1H); 13C NMR (101 MHz, The optical density of the untreated control aer 72 h was
DMSO) d 145.6, 144.9, 140.4, 139.4, 130.0, 129.7, 128.4, 126.0, normalized as 100% of viable cells allowing determination of
122.2, 121.6, 121.0, 120.8, 117.0, 113.9, 111.6; HRMS (ES TOF) the concentration that reduced their global growth by 50% aer
calcd for C15H10ClN2 (M + H)+ 253.0527, found 253.0528 (0.6 72 h of treatment.
ppm).
Conflicts of interest
9-Chloro-2,3-dimethoxy-5-methyl-5H-indolo[3,2-c]quinoline
(1dea)
There are no conicts to declare.
Yield 61% (via general procedure A). Yellow crystalline solid, Rf
0.39 (acetone/benzene/ammonia 8 : 8 : 1), mp 270–271 ꢀC Acknowledgements
(dioxane–EtOH), Lit mp 270–271 ꢀC.3g 1H NMR (400 MHz,
DMSO) d 9.17 (s, 1H), 8.04–7.98 (m, 2H), 7.70 (d, J ¼ 1.8 Hz, 1H),
7.31 (s, 1H), 7.16 (dd, J ¼ 8.2, 1.9 Hz, 1H), 4.20 (s, 3H), 4.00 (s,
2H), 3.99 (s, 3H); 13C NMR (101 MHz, DMSO) d 155.5, 153.7,
This work was nanced by the Russian Science Foundation
(grant #17-73-10301).
151.2, 148.0, 136.8, 131.0, 129.5, 124.3, 120.6, 118.7, 117.3, Notes and references
115.1, 115.0, 103.3, 99.5, 56.0, 55.9, 42.5; HRMS (ES TOF) calcd
for C18H16ClN2O2 (M + H)+ 327.0895, found 327.0886 (2.8 ppm).
1 (a) P. T. Parvatkar and P. S. Parameswaran, Curr. Org. Synth.,
2016, 13, 58–72; (b) P. T. Parvatkar, P. S. Parameswaran and
S. G. Tilve, Curr. Org. Chem., 2011, 15, 1036–1057; (c)
K. H. Lee, J. Nat. Prod., 2010, 73, 500–516; (d)
P. T. Parvatkar and M. S. Majik, RSC Adv., 2014, 4, 22481–
22486.
2 (a) P. Aroonkit, C. Thongsornkleeb, J. Tummatorn, S. Kra-
jangsri, M. Mungthin and S. Ruchirawat, Eur. J. Med.
Chem., 2015, 56–62; (b) N. Wang, K. J. Wicht, K. Imai,
M. Wang, T. Anh Ngoc, R. Kiguchi, M. Kaiser, T. J. Egan
and T. Inokuchi, Bioorg. Med. Chem., 2014, 22, 2629–2642;
(c) S. Van Miert, S. Hostyn, B. U. W. Maes, K. Cimanga,
9-Chloro-2,3-dimethoxy-11H-indolo[3,2-c]quinoline (1dda)
Yield 54% (viꢀa general procedure A). Off-white crystalline solid,
mp 309–310 C (acetone/hexane), Lit mp 309–310 C.3g Rf 0.55
ꢀ
(acetone/benzene/ammonia 8 : 8 : 1). 1H NMR (400 MHz,
DMSO) d 12.53 (s, 1H), 9.39 (s, 1H), 8.26 (d, J ¼ 8.4 Hz, 1H), 7.91
(s, 1H), 7.71 (d, J ¼ 1.6 Hz, 1H), 7.53 (s, 1H), 7.32 (dd, J ¼ 8.4,
1.5 Hz, 1H), 3.99 (s, 3H), 3.95 (s, 3H); 13C NMR (101 MHz,
DMSO) d 150.9, 148.8, 142.2, 142.2, 140.3, 139.3, 129.6, 121.3,
121.0, 120.5, 113.1, 111.3, 111.0, 109.2, 101.2, 55.8, 55.6; HRMS
(ES TOF) calcd for C17H14ClN2O2 (M + H)+ 313.0738, found
313.0732 (1.9 ppm).
`
R. Brun, M. Kaiser, P. Matyus, R. A. Domisse, G. Lemiere,
A. Vlietinck and L. Pieters, J. Nat. Prod., 2005, 68, 674–677;
(d) L. R. Whittell, K. T. Batty, R. P. M. Wong, E. M. Bolitho,
S. A. Fox, T. M. E. Davis and P. E. Murray, Bioorg. Med.
Chem., 2011, 19, 7519–7525.
3 (a) B. Boganyi and J. Kaman, Tetrahedron, 2013, 69, 9512–
9519; (b) T. H. M. Jonckers, B. U. W. Maes,
Cancer cell growth inhibition
Cell lines used to evaluate the growth inhibitory effects of the
compounds were obtained from the American Type Culture
Collection (ATCC, Manassas, VA, USA), the European Collection
of Cell Culture (ECACC, Salisbury, UK) and the Deutsche
Sammlung von Mikroorganismen und Zellkulturen (DSMZ,
Braunschweig, Germany). The human cell lines breast carci-
noma MCF-7 (DSMZ ACC115), oligodendroglioma Hs683 (ATCC
HTB138), non-small cell lung cancer A549 (DSMZ ACC107),
glioblastoma U373 cells (ECACC 08061901), melanoma SKMEL-
28 (ATCC HTB72) and the murine melanoma B16F10 (ATCC
CRL-6475) cells were cultured in RPMI supplemented with 10%
FBS, 4 mM glutamine, 100 mg mLꢂ1 gentamicin, and 200 units
per mL to 200 mg mLꢂ1 penicillin–streptomycin. The cell lines
`
G. L. F. Lemiere, G. Rombouts, L. Pieters, A. Haemers and
´
R. A. Dommisse, Synlett, 2003, 615–618; (c) G. Timari,
´
´
T. Soos and G. Hajos, Synlett, 1997, 1067–1068; (d)
P. S. Volvoikar and S. G. Tilve, Org. Lett., 2016, 18, 892–895;
(e) K. Hayashi, T. Choshi, K. Chikaraishi, A. Oda,
R. Yoshinaga, N. Hatae, M. Ishikura and S. Hibino,
Tetrahedron, 2012, 68, 4274–4279; (f) X. Chen, P. Sun, J. Xu,
X. Wu, L. Kong, H. Yao and A. Lin, Tetrahedron Lett., 2014,
55, 7114–7117; (g) M. G. Uchuskin, A. S. Pilipenko,
O. V. Serdyuk, I. V. Trushkov and A. V. Butin, Org. Biomol.
Chem., 2012, 10, 7262–7265; (h) J. Tummatorn,
C. Thongsornkleeb and S. Ruchirawat, Tetrahedron, 2012,
68, 4732–4739; (i) R. N. Kumar, T. Suresh and P. S. Mohan,
Tetrahedron Lett., 2002, 43, 3327–3328.
ꢀ
were cultured in asks, maintained and grown at 37 C, 95%
humidity and 5% CO2. The evaluation of the antiproliferative
effects of the compounds on these cell lines was performed
through the colorimetric assay MTT.14 Firstly, cells were tryp-
sinized and seeded in 96 well plates. Aer 24 h, cells were
treated with the compounds at different concentrations,
ranging from 10 nM to 100 mM or le untreated for 72 h. The
compounds' dilutions in culture medium were prepared from
a stock solution in DMSO (10 mM). Estimation of cell viability
was performed by means of the MTT – (3-(4,5-dimethylthiazol-2-
4 A. V. Aksenov, D. A. Aksenov, N. A. Orazova, N. A. Aksenov,
G. D. Griaznov, A. De Carvalho, R. Kiss, V. Mathieu,
A. Kornienko and M. Rubin, J. Org. Chem., 2017, 82, 3011–
3018.
5 P. K. Agarwal, D. Sawant, S. Sharma and B. Kundu, Eur. J.
Org. Chem., 2009, 292–303.
This journal is © The Royal Society of Chemistry 2018
RSC Adv., 2018, 8, 36980–36986 | 36985