2322
D. Kumar et al. / Bioorg. Med. Chem. Lett. 21 (2011) 2320–2323
Table 2
In vitro cytotoxicity dataa of 1,3,4-thiadiazoles 1a–j against selected human cancer cell lines IC50 M)b
(l
Entry
Ar
Ar0
LnCap
DU145
PC3
MCF7
MDA-MB-231
PaCa2
1a
1b
1c
1d
1e
1f
1g
1h
4-OH-3-OCH3C6H3
4-OH-3-OCH3C6H3
4-OH-3-OCH3C6H3
4-OH-3-OCH3C6H3
4-OH-3-OCH3C6H3
3-OC5H9-4-OCH3C6H3
3,4,5-(OCH3)3C6H2
3,4,5-(OCH3)3C6H2
3,4,5-(OCH3)3C6H2
3,4,5-(OCH3)3C6H2
C6H5
205.5
544.6
204.2
62.3
>1000
111.8
92.8
66.5
102.6
29.5
57.6
30
55.3
175.2
204.7
>1000
>1000
84.7
9.2
39
58.5
449.6
49.1
>1000
>1000
33.6
25.9
242.6
5.8
4-CH3C6H4
4-ClC6H4
4-NO2C6H4
4-OCH3C6H4
C6H5
655.6
435.4
>1000
>1000
177.1
283.9
99.7
130.7
33.3
12.3
>1000
634.7
>1000
>1000
96.9
81.8
71.4
20.2
14.5
124
479.8
386.4
>1000
>1000
433.9
122.4
13.8
32.1
25.2
6.8
C6H5
4-NO2C6H4
4-CH3C6H4
4-OCH3C6H4
6.6
1i
1j
10.2
11.1
66.2
4.3
25.3
Doxorubicin
6.3
IC50 values of about 20
l
M are indicated in bold face; OC5H9: cyclopentyloxy
a
These experiments were conducted in triplicates at three independent times.
b
IC50 values were obtained using a dose–response curve by nonlinear regression using a curve fitting program, GraphPad Prism 5.0.
The anticancer activity profiles of the screened compounds indi-
References and notes
cate that the substitution on the C-5 aryl ring plays a great role in
furnishing the activity. The compounds 1a–e with 4-OH-3-OCH3–
C6H3 and 1f with 3-OC5H9-4-OCH3–C6H3 at C-5 position were
found to be less active than the corresponding compounds 1g–j
with 3,4,5-(OCH3)3C6H2. The variation of C-2 arylamino group
seems to have little effect on the activity of 1,3,4-thiadiazoles. As
it was hypothesized, the trimethoxyphenyl substitution might be
playing a crucial role by means of binding to the Colchicine site
on tubulin. Our earlier studies on 3,5-disubstituted-1,2,4-oxadiaz-
oles delivered a very potent compound (IC50 = 10 nM) with 3-
OC5H9-4-OCH3–C6H3 and piperdin-4-yl.45 The compound 1f
designed following similar pattern resulted in moderate activity.
The compounds 1g–j with trimethoxyphenyl moiety exhibited
1. Sharma, R.; Sainy, J.; Chaturvedi, S. C. Acta Pharm. 2008, 58, 317.
2. Turner, S.; Myers, M.; Gadie, B.; Nelson, A. J.; Pape, R.; Saville, J. F.; Doxey, J. C.;
Berridge, T. L. J. Med. Chem. 1988, 31, 902.
3. Foroumadi, A.; Mansouri, S.; Kiani, Z.; Rahmani, A. Eur. J. Med. Chem. 2003, 38,
851.
4. Pattanayak, P.; Sharma, R.; Sahoo, P. K. Med. Chem. Res. 2009, 18, 351.
5. Rajak, H.; Deshmukh, R.; Aggarwal, N.; Kashaw, S.; Kharya, M. D.; Mishra, P.
Arch. Pharm. (Weinheim, Ger.) 2009, 342, 453.
6. Foroumadi, A.; Sheybani, V.; Sakhteman, A.; Abasi, M.; Shafiei, A.; Ramesh, K.
M.; Farazi, F. R.; Tabatabai, S. A. DARU 2007, 15, 89.
7. Zeng, Q.; Bourbeau, M. P.; Wohlhieter, G. E.; Yao, G.; Monenschein, H.; Rider, J.
T.; Lee, M. R.; Zhang, S.; Lofgren, J.; Freeman, D.; Li, C.; Tominey, E.; Huang, X.;
Hoffman, D.; Yamane, H.; Tasker, A. S.; Dominguez, C.; Viswanadhan, V. N.;
Hungate, R.; Zhang, X. Bioorg. Med. Chem. Lett. 2010, 20, 1652.
8. Barboiu, M.; Cimpoesu, M.; Guran, C.; Supuran, C. T. Met.-Based Drugs 1996, 3,
227.
very good activity (IC50: 4.3–20.2
having phenylamino group at the 2-position showed greater po-
tency towards breast cancer cell line (MCF7, IC50 = 9.2 M) with
at least threefold selectivity compared to other tested cells. Intro-
duction of electron-withdrawing group in the C-2 arylamino unit
(compound 1h) is beneficial for the activity against breast cancer
l
M). The 1,3,4-thiadiazole 1g
9. Maren, T. H. J. Glaucoma 1995, 4, 49.
10. Puscas, I.; Supuran, C. T. In Aparelho Digestivo; Coelho, J., Ed.; MEDSI: Rio de
Janeiro, 1996; p 1704.
11. Dogan, H. N.; Duran, A.; Rollas, S.; Sener, G.; Uysal, M. K.; Gülen, D. Bioorg. Med.
Chem. 2002, 10, 2893.
12. Kritsanida, M.; Mouroutsou, A.; Marakos, P.; Pouli, N.; Papakonstantinou-
Garoufalias, S.; Pannecouque, C.; Witvrouw, M.; De Clercq, E. Farmaco 2002, 57,
253.
13. Schenone, S.; Bruno, O.; Ranise, A.; Bondavalli, F.; Filippelli, W.; Falcone, G.;
Giordano, L.; Vitelli, M. R. Bioorg. Med. Chem. 2001, 9, 2149.
14. Davis, M. Org. Compd. Sulphur, Selenium, Tellurium 1979, 5, 440.
15. Sato, M.; Kamita, T.; Nakadera, K.; Mukaida, K.-I. Eur. Polym. J. 1995, 31, 395.
16. Gao, Y.; Zhang, Z.; Xue, Q. Mater. Res. Bull. 1999, 34, 1867.
17. Bentiss, F.; Lagrenée, M.; Wignacourt, J. P.; Holt, E. M. Polyhedron 2002, 21, 403.
18. Wilton-Ely, J. D. E. T.; Schier, A.; Schmidbaur, H. Organometallics 2001, 20, 1895.
19. Lynch, D.; Ewington, J. Acta Crystallogr., Sect. C 2001, 57, 1032.
20. Franski, R. J. Mass Spectrom. 2004, 39, 705.
21. Matysiak, J.; Nasulewicz, A.; Pelczynska, M.; Switalska, M.; Jaroszewicz, I.;
Opolski, A. Eur. J. Med. Chem. 2006, 41, 475.
22. Matysiak, J.; Opolski, A. Bioorg. Med. Chem. 2006, 14, 4483.
23. Zheng, K. B.; He, J.; Zhang, J. Chin. Chem. Lett. 2008, 19, 1281.
24. Kumar, D.; Kumar, N. M.; Sundaree, S.; Johnson, E. O.; Shah, K. Eur. J. Med. Chem.
2010, 45, 1244.
25. Kumar, D.; Maruthi Kumar, N.; Chang, K.-H.; Shah, K. Eur. J. Med. Chem. 2010,
45, 4664.
26. Kumar, D.; Sundaree, S.; Johnson, E. O.; Shah, K. Bioorg. Med. Chem. Lett. 2009,
19, 4492.
27. Kumar, D.; Kumar, N. M.; Akamatsu, K.; Kusaka, E.; Harada, H.; Ito, T. Bioorg.
Med. Chem. Lett. 2010, 20, 3916.
28. Elson, P. J.; Kvols, L. K.; Vogl, S. E.; Glover, D. J.; Hahn, R. G.; Trump, D. L.;
Carbone, P. P.; Earle, J. D.; Davis, T. E. Invest. New Drugs 1988, 6, 97.
29. Nelson, J. A.; Rose, L. M.; Bennett, L. L. Cancer Res. 1976, 36, 1375.
30. Nelson, J. A.; Rose, L. M.; Bennett, L. L., Jr. Cancer Res. 1977, 37, 182.
31. Rzeski, W.; Matysiak, J.; Kandefer-Szerszen, M. Bioorg. Med. Chem. 2007, 15,
3201.
32. Jordan, A.; Hadfield, J.; Lawrence, N.; McGown, A. Med. Res. Rev. 1998, 18, 259.
33. Hadfield, J.; Ducki, S.; Hirst, N.; McGown, A. Prog. Cell Cycle Res. 2003, 5, 309.
34. Lebrini, M.; Bentiss, F.; Lagrenée, M. J. Heterocycl. Chem. 2005, 42, 991.
35. Gierczyk, B.; Zalas, M. Org. Prep. Proced. Int. 2005, 37, 213.
36. Severinsen, R.; Kilburn, J. P.; Lau, J. F. Tetrahedron 2005, 61, 5565.
37. Oruc, E. E.; Rollas, S.; Kandemirli, F.; Shvets, N.; Dimoglo, A. S. J. Med. Chem.
2004, 47, 6760.
l
cell lines (MCF7, IC50 = 6.6 lM; MDA-MB-231, IC50 = 13.8 lM),
whereas electron-donating group such as CH3 or OCH3 (com-
pounds 1i and 1j) resulted in a significant increase in cytotoxic po-
tency except against MCF7 cell line. In particular, compounds 1g
and 1h were found to be selectively cytotoxic in MCF7 cells. The
4-methoxy analogue 1j possessed potent anticancer activity
against all the tested cell lines while simultaneously exhibiting at
least threefold selectivity towards PaCa2. The compounds 1a–e
have exhibited moderate to poor anticancer activity (though some
of these have achieved good selectivity) indicating that 4-OH-3-
OCH3C6H3 group at 5-position is detrimental for the activity. It
earmarks the prominence of trimethoxyphenyl substitution at 5-
position of 1,3,4-thiadiazole. Doxorubicin was used as a control,
which showed higher cytotoxicity towards LnCAP, DU145, and
MDA-MB-231 cell lines.
In conclusion, the one-pot reaction of aryl aldehyde, hydrazine
hydrate and aryl isothiocyanate led to the expeditious synthesis
of 1,3,4-thiadiazoles 1a–j in good yields. The advantages of the
protocol include simple reaction workup, easily available starting
materials and convenient isolation. The compounds 1g–j exhibited
very good anticancer activity with good selectivity indicating the
importance of 3,4,5-trimethoxyphenyl at C-5 position. The detailed
SAR and molecular target study of these 1,3,4-thiadiazoles are in
progress and will be reported in due course.
Acknowledgment
38. Padmavathi, V.; Reddy, G. S.; Padmaja, A.; Kondaiah, P.; Ali, S. Eur. J. Med. Chem.
2009, 44, 2106.
The authors thank DST, New Delhi for the financial support.