4-Benzyloxy-γ-Sultone DeriVatiVes
Journal of Medicinal Chemistry, 2009, Vol. 52, No. 6 1591
(14) McGuigan, C.; Pathirana, R. N.; Snoeck, R.; Andrei, G.; De Clercq,
E.; Balzarini, J. Discovery of a new family of inhibitors of human
cytomegalovirus (HCMV) based upon lipophilic alkyl furano pyri-
midine dideoxynucleosides: action via a novel non-nucleosidic mech-
anism. J. Med. Chem. 2004, 47, 1847–1851.
(15) Shute, M. E.; Cudahy, M. M.; Brideau, R. J.; Homa, F. L.; Hopkins,
T. A.; Knechtel, M. L.; Oien, N. L.; Pitts, T. W.; Poorman, R. A.;
Wathen, M. W.; Wieber, J. L. 4-oxo-4,7-Dihydrothieno[2,3-b]pyridines
as non-nucleoside inhibitors of human cytomegalovirus and related
herpesvirus polymerases. J. Med. Chem. 2005, 48, 5794–5804.
(16) Oien, N. L.; Brideau, R. J.; Hopkins, T. A.; Wieber, J. L.; Knechtel,
M. L.; Shelly, J. A.; Anstadt, R. A.; Wells, P. A.; Poorman, R. A.;
Huang, A.; Vailancourt, V. A.; Clayton, T. L.; Tucker, J. A.; Wathen,
M. W. Broad-spectrum antiherpes activities of 4-hydroxyquinoline
carboxamides, a novel class of herpesvirus polymerase inhibitors.
Antimicrob. Agents Chemother. 2002, 46, 724–730.
(17) Hartline, C. B.; Harden, E. A.; Williams-Aziz, S. L.; Kushner, N. L.;
Brideau, R. J.; Kern, E. R. Inhibition of herpesvirus replication by a
series of 4-oxo-dihydroquinolines with viral polymerase activity.
AntiVir. Res. 2005, 65, 97–105.
(18) Buerger, I.; Reefschlaeger, J.; Bender, W.; Eckenberg, P.; Popp, A.;
Weber, O.; Graeper, S.; Klenk, H. D.; Ruebsamen-Waigmann, H.;
Hallenberger, S. A novel non-nucleoside inhibitor specifically targets
cytomegalovirus DNA maturation via the UL89 and UL56 gene
products. J. Virol. 2001, 75, 9077–9086.
EC50 values were calculated from graphic plots of the percentage
of cytopathogenicity as a function of concentration of the compounds.
VZV. The laboratory wild-type VZV strain Oka and the
thymidine kinase-deficient VZV strain 07/1 were used. Confluent
HEL cells grown in 96-well microtiter plates were inoculated with
VZV at an input of 20 PFU per well. After a 2 h incubation period,
residual virus was removed and varying concentrations of the test
compounds were added (in duplicate). Antiviral activity was
expressed as the 50% effective concentration required to reduce
viral plaque formation after 5 days by 50% as compared with
untreated controls.
Cytotoxicity Assays. Cytotoxicity measurements were based on
the inhibition of HEL cell growth. HEL cells were seeded at a rate
of 5 × 103 cells/well into 96-well microtiter plates and allowed to
proliferate for 24 h. Then, medium containing different concentra-
tions of the test compounds was added. After 3 days of incubation
at 37 °C, the cell number was determined with a Coulter counter.
The 50% cytostatic concentration (CC50) was calculated as the
compound concentration required to reduce cell growth by 50%
relative to the number of cells in the untreated controls. CC50 values
were estimated from graphic plots of the number of cells (percentage
of control) as a function of the concentration of the test compounds.
Cytotoxicity was expressed as the minimum cytotoxic concentration
(MCC) or the compound concentration that causes a microscopically
detectable alteration of cell morphology.
(19) Reefschlaeger, J.; Bender, W.; Hallenberger, S.; Weber, O.; Eckenberg,
P.; Goldmann, S.; Haerter, M.; Buerger, I.; Trappe, J.; Herrington,
J. A.; Haebich, D.; Ruebsamen-Waigmann, H. Novel non-nucleoside
inhibitors of cytomegalovirus (BAY 38-4766): in vitro and in vivo
antiviral activity and mechanism of action. J. Antimicrob. Chemother.
2001, 48, 757–767.
Acknowledgment. We thank Lies Van den Heurck, Anita
Camps, and Steven Carmans for excellent technical assistance.
We also thank the Spanish MEC/MCINN (project SAF2006-
12713-C02), the European Commission [project HPAW-CT-
2002-90001 (Rene´ Descartes Prize 2001)] for financial support,
and the K. U. Leuven (GOA project no. 05/19).
(20) Andrei, G.; De Clercq, E.; Snoeck, R. Novel inhibitors of human CMV.
Curr. Opin. InVest. Drugs 2008, 9 (2), 132–145.
(21) Borthwick, A. D. Design of translactam HCMV protease inhibitors
as potent antivirals. Med. Res ReV. 2005, 25, 427–452.
(22) Wathen, M. W. Non-nucleoside inhibitors of herpesviruses. ReV. Med.
Virol. 2002, 12, 167–178.
(23) Bogner, E. Human cytomegalovirus terminase as a target for antiviral
chemotherapy. ReV. Med. Virol. 2002, 12, 115–127.
Supporting Information Available: Elemental analysis data of
1
(24) Mart´ınez, A.; Castro, A.; Gil, C.; Pe´rez, C. Recent strategies in the
development of new human cytomegalovirus inhibitors. Med. Res. ReV.
2001, 21, 227–244.
compounds 3, 5a,d-h, 6a,d-h, 7a,d-h, 8a-h, and 9-33. H
NMR and 13C NMR data of compounds 5b-h, 6b-h, 7b-h,
8b-h, and 10-33. This material is available free of charge via
(25) Villarreal, E. C. Current and potential therapies for the treatment of
herpes-virus infections. Prog. Drug Res. 2003, 60, 263–307.
(26) De Castro, S.; Peromingo, M. T.; Lozano, A.; Camarasa, M. J.;
Vela´zquez, S. Reactivity of the 4-amino-1,2-oxathiole-2,2-dioxide
heterocyclic system: a combined experimental and theoretical study.
Chem.sEur. J. 2008, 14, 9620–9632.
(27) Stachel, H.-D.; Drasch, G.; Kunze, J.; Peh, J. (BASF AG) Ger. Offen.
2,431,734. July 2, 1974; Chem. Abstr. 1975, 84, 431, 135626.
(28) Zhang, Z.; Liu, G. J.; Wang, Y. L.; Wang, Y. Phase-transfer catalyzed
monoalkylation of ethyl 2-(p-tolylsulfonyl)acetate. Synth. Commun.
1989, 19, 1167–1173.
References
(1) Ljungman, P.; Griffiths, P.; Paya, C. Definitions of cytomegalovirus
infection and disease in transplant recipients. Clin. Infect. Dis. 2002,
34, 1094–1097.
(2) Ives, D. V. Cytomegalovirus disease in AIDS. AIDS 1997, 11, 1791–
1797.
(3) Gaytant, M. A.; Steegers, E. A. P.; Semmekrot, B. A.; Merkus,
H. M. M. W.; Galama, J. M. D. Congenital cytomegalovirus infection:
review of the epidemiology and outcome. Obstet. Gynecol. SurV. 2002,
57, 245–256.
(4) Whitley, R. J.; Roizman, B. Herpes simplex virus infections. Lancet
2001, 357, 1513–1518.
(29) Posza´va´cz, L.; Simig, G. Synthesis of 4-amino-5H-1,2-oxathiole 2,2
dioxides by cyclization of cyanohydrin mesylates. New routes to
ꢀ-amino and ꢀ-keto sulfonic acids. J. Org. Chem. 1997, 62, 7021–
7023.
(30) Snoeck, R.; Andrei, G.; Bodaghi, B.; Lagneaux, L.; Daelemans, D.;
De Clercq, E.; Neytes, J.; Bousseau, A.; Nemecek, C.; Roy, C.
2-Chloro-3-pyridin-3-yl-5,6,7,8-tetrahydroindolizine-1-carboxamide
(CMV423), a new lead compound for the treatment of human
cytomegalovirus infections. AntiViral Res. 2002, 55, 413–424.
(31) McGuigan, C.; Brancale, A.; Andrei, G.; Snoeck, R.; De Clercq, E.;
Balzarini, J. Novel byciclic furanopyrimidines with dual anti-VZV
and HCMV activity. Bioorg. Med. Chem. Lett. 2003, 13, 4511–4513.
(32) Robins, M. J.; Miranda, K.; Rajwanshi, V. K.; Peterson, M. A.; Andrei,
G.; Snoeck, R.; De Clercq, E.; Balzarini, J. Synthesis and Biological
Evaluation of 6-(alkyn-1-yl)furo[2,3-d]pyrimidin-2(3H)-one Base and
Nucleoside Derivatives. J. Med. Chem. 2006, 49, 391–398.
(33) Gerona-Navarro, G.; Pe´rez de Vega, M. J.; Garc´ıa-Lo´pez, M. T.;
Andrei, G.; Snoeck, R.; De Clercq, E.; Balzarini, J.; Gonza´lez-Mun˜iz,
R. From 1-acyl-ꢀ-lactam human cytomegalovirus protease inhibitors
to 1-benzyloxycarbonyl-azetidines with improved antiviral activity.
A straightforward approach to convert covalent to noncovalent
inhibitors. J. Med. Chem. 2005, 48, 2612–2621.
(5) Laguardia, J. J.; Gilden, D. H. Varicella zoster virus: a re-emerging
infection. J. InVest. Dermatol. Symp. Proc. 2001, 6, 183–187.
(6) Kennedy, P. G. E. Varicella zoster virus latency in human ganglia.
ReV. Med. Virol. 2002, 12, 327–334.
(7) Schmader, K. Herpes zoster in older adults. Clin. Infect. Dis. 2001,
32, 1481–1486.
(8) Biron, K. K. Antiviral drugs for cytomegalovirus diseases. AntiVir.
Res. 2006, 71, 154–163.
(9) De Clercq, E. Antiviral drugs in current clinical use. J. Clin. Virol.
2004, 30, 115–133.
(10) Gilbert, C.; Bestman-Smith, J.; Boivin, G. Resistance of herpesviruses
to antiviral drugs: clinical impacts and molecular mechanisms. Drug
Resist. Updates 2002, 5, 88–114.
(11) Baldanti, F.; Gerna, G. Human cytomegalovirus resistance to antiviral
drugs: diagnosis, monitoring and clinical impact. J. Antimicrob.
Chemother. 2003, 52, 324–330.
(12) Evers, D. L.; Komazin, G.; Ptak, R. G.; Shin, D.; Emmer, B. T.;
Townsend, L. B.; Drach, J. C. Inhibition of human cytomegalovirus
replication by benzimidazole nucleosides involves three distinct
mechanisms. Antimicrob. Agents Chemother. 2004, 48, 3918–3927.
(13) Krosky, P. M.; Borysko, K. Z.; Nassiri, M. R.; Devivar, R. V.; Ptak,
R. G.; Davis, M. G.; Biron, K. K.; Townsend, L. B.; Drach, J. C.
Phosphorylation of ꢀ-D-ribosylbenzimidazoles is not required for
activity against human cytomegalovirus. Antimicrob. Agents Chemoth-
er. 2002, 46, 478–486.
(34) Ve´ron, J.-B.; Enguehard-Gheiffier, C.; Snoeck, R.; Andrei, G.; De
Clercq, E.; Gueiffier, A. Influence of 6- or 8-substitution on the
antiviral activity of 3-phenethylthiomethylimidazo[1,2-a]pyridine against
human cytomegalovirus (HCMV) and varicella zoster virus (VZV).
Bioorg. Med. Chem. 2007, 7209–7219.
JM8014662